Syllabus CH EN 6161 – Petroleum Engineering Basics

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>3 (required for MS in Petroleum Engineering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Schedule</td>
<td>Tuesdays and Thursdays 7:30 a.m. – 8:50 a.m.</td>
</tr>
<tr>
<td>Class Location</td>
<td>WEB 2460 and distance Learning</td>
</tr>
</tbody>
</table>
| Instructor | Ian Walton, Ph.D.
Senior Research Scientist, Energy & Geoscience Institute,
University of Utah
Tel. 801-581-8497; Email: iwalton@egi.utah.edu |

V.1 Text:
No Textbook is available for all the material in the course. Reference material will be made available.

V.2 Course Objective:
Students are expected to enter the course from a variety of engineering backgrounds. The objective of the course is to provide sufficient petroleum engineering background to all the students.

V.3 Curriculum
The course is divided into six modules.

Module 1: Introduction and Applied Mathematics (2 Weeks)
- REVIEW OF ENGINEERING BASICS NEEDED (define some key cases to look at)
- REVIEW OF MATHEMATICAL BASICS
 - Integration, Differentiation – where to look up
 - ODEs and PDEs with examples that have oilfield applications – temperature and flow
 - Regression
 - Basic statistics
- ESSENTIAL NUMERICAL METHODS
 - Finite Difference, Finite Element,
- ESSENTIAL COMPUTER TOOLS
 - MatLab, Comsol, CMG, Eclipse, Petrel

Module 2: Oilfield Chemistry (2 weeks)
- ORGANIC CHEMISTRY AND OIL COMPONENTS.
o What are hydrocarbons? How many covalent bonds do carbon, hydrogen, nitrogen, oxygen form? ...

o What is an alkane? What is an aromatic? What is an acid? What is pH? What is a polymer? What is an olefin? Oil components: waxes, aromatics, resins, asphaltenes, WAT, pour point, API ...

- Newtonian and Non-Newtonian flow
- Flow assurance and drilling fluids relevance
- Corrosion
- Fluid Incompatibility
 - Understanding the causes of scaling during production and the causes of scaling when incompatible fluids are injected
 - Souring is a big issue - biologic degradation to produce H2S
 - Many formations are acidized with HCl or HF-HCl blends. Students need to be reminded of simple principles of physical chemistry so that they can understand the potential for undesirable precipitation.
 - Produced water remediation - RO etc.

Module 3: Thermodynamics Relevant to Petroleum Engineering (3 Weeks)
- Basic thermodynamic principles (chemical engineering)
- Thermodynamics of gases
- Phase equilibria and software such as Winprop or PVTSim
- Applications in oil and gas

Module 4: Physical Properties of Oilfield Fluids (1 week)
- Densities, viscosities and other properties of interest – This is introductory fluid mechanics – what they are and how they are measured
- Oil, water, drilling fluids, cement, fracturing and completion fluids

Module 5: Fluid Mechanics for Petroleum Engineers (3 Weeks)
- **HYDROSTATIC PRESSURE**
 - Bottomhole pressure calculations (static)
- **PIPE FLOW**
 - Reynolds Number, Laminar, Turbulent
 - Pipeline calculations
 - Injection and production through tubulars
 - Minor losses through valves
- **SLURRY AND SOLIDS TRANSPORT**
• Proppant

• DIFFERENT FLOW REGIMES
 o Oilfield scenarios with turbulent and laminar flow
 o Polymers – Bingham plastic, power law

• MULTI-PHASE FLOW
 o Vertical and inclined wells
 o Concepts of Holdup
 o Different flow regimes

Module 6: Rock Mechanics for Petroleum Engineers (2 Weeks)

• Stress and Strain and Strength in Two and Three Dimensions
 o 6 hours
 o Definitions
 o Principal Stresses
 o Effective Stresses and Poroelasticity

• Measurements of Mechanical Properties and Stress
 o 3 hours
 o Laboratory and the Field
 o Correlations, Rules of Thumb

• Applications
 o 3 hours because will cover elsewhere
 o Drilling and Wellbore Stability
 o Hydraulic Fracturing
 o Sand Production
 o Compaction and Compressibility
 o Thermal Operations

Module 7: Heat Transfer and Reactions (3 Weeks)

• Thermochemistry
• Essentials of heat transfer
• Basics of reactions
• Reaction thermodynamics for petroleum engineers