
Diagnosing and Dealing with Errors in MATLAB
Mike Hansen
6-4-2011

A fundamental law of programming is that all programmers make stupid mistakes (good programmers just
make fewer ones). Another law is that stupid mistakes often have easy fixes but disastrous-looking results. A
lot of the errors being dealt with in the help sessions can fit into this category of mistakes. Diagnosing and
fixing such errors is not only an important skill for you to learn (now!), it will also allow us to address more
important topics in the help sessions.

When you encounter an error in MATLAB, and your program terminates with an ugly red error message, a
simple procedure for diagnosing and fixing it is as follows:

(1) Check to see if the error message is old. If you don’t clear the command window when executing your
program, your error messages may be old ones that don’t still apply. There’s nothing more frustrating
than trying to fix an error which doesn’t exist (and screwing up good code in the process!).

(2) If your error message is current, then read it carefully. It will give you a basic description of the error as

well as the code line and m-file name where your program terminates. If you can’t figure out the
solution from the error message and a review at your code, move on to step 3.

(3) If your error concerns a MATLAB function like plot or linspace then you can use MATLAB’s help

directory. If that doesn’t work, try a search engine or MATLAB’s website.

(4) If you can’t resolve the error with the error message, the help directory, or the internet, then send one
of us an email and/or come to the help session(s).

Below are three examples of diagnosing an error by using the error message and MATLAB’s help directory. The
third example in particular should be helpful.

EXAMPLES:

1. An error with plot.
2. An error with matrix operations.
3. The larger error message associated with a problematic function.

An error with the plot command.

In the command window below, I’ve defined vectors a and b. Then I have tried to plot b over a. This gives me
an error message:

Reading the error message, I see that the vectors I’m plotting are not the same length. Looking at a and b, we
see that this is the case.

If I didn’t immediately understand what the error message meant, I could try MATLAB’s help directory.
Because we’re having an issue with plot, we type help plot, and get the following result:

Even if you haven’t received any plotting errors so far, the text above is still a good read. Nobody can
memorize all the customizations to the plot command, so “help plot” is a good one to remember.

An error with a matrix operation.

A lot of you have had at least one issue with MATLAB when dealing with rows and columns, and how they
differ in matrix operations.

First of all, remember the rule for matrix multiplication: A*B only is possible if the number of columns of A
equals the number of rows of B. This is why we can’t multiply an NxN matrix by a 1xN row vector.

Looking at the m-file below, we see a 2x2 matrix A and a 1x2 vector b. Suppose we have a system of equations
represented by Ax = b. In attempting to solve this equation for x, we use the backslash command:

When we execute this code, we should expect an error because we’ve defined b as a row vector, and not as a
column. If b is a row vector then a matrix multiplication of A and x cannot possibly result in b, which means
that there cannot be a solution. MATLAB’s backslash command sees this and gives us an error message:

Now that we have the red error message, we read it and find that the error concerns matrix dimensions, and it
occurs on line 8 of Untitled (the name of the m-file), where we tried to do A\b. When you see an issue about
matrix dimensions, most of the time it’s either a size issue or a row vs. column issue. We solve the problem by
making b a column vector.

An error in a function.

The examples above give error messages that aren’t too ugly. But when dealing with functions we’ll often get
something uglier like this:

This error message has not one but two errors. The code that gave this result is an incorrect version (not a
student’s, just a modification of my own) of the pentadiagonal matrix solver from the first homework
assignment. (The incorrect function is called pentdiag_solver_incorrect and the driver m-file is called
pentdiag_DRIVER_incorrect.)

We can see from the error message that there is a problem with BOTH the driver and the function. But, upon
closer look at line 13 in the driver (or in the error message, which conveniently shows us line 13), we see that
the error in the DRIVER is the call to the function, which means that the function is incorrect. Look carefully at
the error message above: this is the way MATLAB will show you an error that results from calling a faulty
function. It prints the error in the driver (which calls the function) on the bottom, and the error in the
function above it.

Reading the function’s error message, we see that the error is on line 27, and that MATLAB can’t access e(0),
because “index must be positive integer or logical.” This probably sounds a little cryptic, but let’s look at
what’s really going on:

Looking at our workspace (to the left of my command window) above, we see that e is a vector. We know that
we can’t access e(0) because the first element of any vector is indexed with 1. Now that we have an idea
about how/why our program is screwing up, we need to check out the incorrect code:

The incorrect function, with line 27 highlighted, is shown below:

We can see the problem immediately. A simple typo of “1-1” instead of the correct “i-1”, which results in
trying to access e(0).

This is an easy mistake to make, and if you couldn’t effectively read the error message it generated, your
progress would be stalled.

Whenever you receive an error message, work with the procedure stated on the first page. Try to figure it out
for yourself. Often you’ll have to learn some new aspects of MATLAB, but there’s a very good chance that the
new information you gain will help you later in the course.

And when you come to the help sessions, it’s a lot easier for us to help you fix an error if you can tell us what
you’ve already tried.

