MATLAB QUICK TUTORIAL

Use a semi-colon (;) at the end of each line to suppress output

Foranarray A (m, n) , m s the row, n is the column

Indexes start at 1

The % symbol starts comments, use them often to easily understand your code
(.. .) at the end of a line indicates expression continues on next line

Get quick help with >>help command
Find commands by typing first few letters then press tab

or >>doc command

Define a scalar >> a = 4;

Define an array > b = [0 1 2 3]; %only columns

(matrix or vector) >> c = [0;1;2;3]1; %only rows
> d = [0 1; 2 3]1; $rows and columns

Define Ranges >> x = 1:5 $fill x with vector ranging from 1 to 5
>> x = 5:-0.5:1 %$fill x with increment of -0.5

>> x= linspace(1,5,10)

Basic Operations

=X /NN

dot (.) preceding any operation is done in every element of
the array. A"2 = A*A =/= A."

Transpose \ %takes the transpose of the matrix
>b = [01 2 3] $makes b a row vector

Define a function >> f = @(x) (x."3 - 4*x); %arguments followed by function
>> g = inline('x."3 — 4*x’,’'x") $same as above
Create M-file (on back)

Evaluate a function | >> £ (2.8) $function with arguments in parenthesis

>> feval (g, 2.8)
>> myfcn (2.8)
%% private function in M-file##

%equivalent to above line

if structure

>> if condition

statements %indent for ease of reading
else
statements
end
%$condition arguments are:
== equal ~= not equal

< less than
> greater than

<= less than or equal to
>= greater than or equal to

& and ~ not | or
for structure for i = 1:5
statements %indent for ease of reading
end
%loops over 1 incremented by 1
Selecting data >> data = [5 10; 3 4; 7 1; 13 4; 20 17; 15 10; 12 11];
>> data(:,1) Sreturns entire 1°° column
>> data (2, :) Sreturns entire 2°¢ row
>> data(2:4,:) $returns rows 2-4
>> sub = data(3,:) S$sets 3% row as new variable
Plotting >> plot (x,Vy) >>plot (x, f(x))

$fill x with 10 equal spaced points

H##M-file myfcn.m
function var = myfcn (x)
%thelp comments
var = x."3 - 4.*x;

Note:

var = return variable

myfcn = function name(saved as myfcn.m)
x = function argument

Example:

3 3
) = (3) = sin)
>> f = @(x) ((3./x).73-s1in(x))
Or
M-file: g.m

function var = g(x)

var = (3./x)."3-sin(x)

Evaluate functions
>> £ (2)
>> g (2)

These return the same values

Passing functions to M-files
M-file: comp.m

function [R A] = comp(fcn,a,b)
Ta = feval (fcn,a);
fcn (b) ;
R = Tb - Ta
A = (Ta+Tb)/2
Evaluate
>> [R1 Al] = comp(f,1,4)

>> [R2 A2] = comp(g,1,4)

Formatting Output

Use fprintf

>> m = 12.5

>>fprintf (‘The value of m is
$f\n’ ,m)

or

>>display (m)

Inserts the value of m where % is located
£ is the formatting option, there are many
others that can dictate number of decimals
returned

\n starts new line in the window

See >>help/doc fprintf for the many,
many formatting options

Plot a function

>> x = 0:.1:2;
>> fl = @ (x) (x.

>> f2 = @(x) (x.73-3);
>> plot(x,fl(x),--)
>> hold %$wont clear current plot
>> plot(x,f2(x), r*")

>> figure %creates new figure

>> plot(x,x"2+5*x,"go’)

~"2+5);

figure (#) swaps active figure for
plotting/formatting options

see >>help/doc plot for more optionsin
plot formatting and options such as

xlabel

ylabel

legend

axes

DO NOT leave plots with unlabeled axis or
blank legends

