MATLAB QUICK TUTORIAL

- Use a semi-colon (;) at the end of each line to suppress output
- For an array $A(m, n)$, m is the row, n is the column
- Indexes start at 1
- The $\%$ symbol starts comments, use them often to easily understand your code
- (...) at the end of a line indicates expression continues on next line
- Get quick help with >>help command or >>doc command
- Find commands by typing first few letters then press tab

Define a scalar	>> a = 4;
Define an array (matrix or vector)	$\left.\begin{array}{ll}\gg \mathrm{b}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right] ; & \text { oonly columns } \\ \gg \mathrm{c}=[0 ; 1 ; 2 ; 3\end{array}\right] ; \quad$ oonly rows
Define Ranges	$\gg x=1: 5$ ofill x with vector ranging from 1 to 5 $\gg x=5:-0.5: 1$ ofill x with increment of -0.5 $\gg x=$ linspace $(1,5,10)$ ofill x with 10 equal spaced points
Basic Operations	+ - * / ^ .* ./ .^ dot(.) preceding any operation is done in every element of the array. $A^{\wedge} 2=A^{*} A=/=A . \wedge$
Transpose	\prime $>b$ $=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right] \quad$otakes the transpose of the matrix omakes b a row vector
Define a function	$\begin{aligned} & \text { >>f }=@(x)(x \cdot \wedge 3-4 * x) ; \text { oarguments followed by function } \\ & \left.\gg=\text { inline(} x . \wedge 3-4{ }^{*} x^{\prime}, x^{\prime}\right) \quad \text { osame as above } \\ & \text { Create M-file (on back) } \end{aligned}$
Evaluate a function	
if structure	```>> if condition statements %indent for ease of reading else statements end %condition arguments are: == equal ~= not equal < less than <= less than or equal to > greater than >= greater than or equal to & and ~ not \| or```
for structure	```for i = 1:5 statements %indent for ease of reading end %loops over i incremented by 1```
Selecting data	
Plotting	>> plot (x,y) >>plot (x,f(x))

\#\#M-file myfcn.m

```
function var = myfcn(x)
%help comments
var = x.^3 - 4.*x;
```

Note:

```
var = return variable
myfcn = function name(saved as myfcn.m)
x = function argument
```


Example:

```
    f(x)=(\frac{3}{x}\mp@subsup{)}{}{3}-\operatorname{sin}(x)
>> f = @(x)((3./x).^3-sin(x))
Or
M-file: g.m
    function var = g(x)
    var = (3./x).^3-sin(x)
```

Evaluate functions
$\gg \mathrm{f}(2)$
$\gg \mathrm{g}(2)$
These return the same values

Passing functions to M-files

```
M-file: comp.m
    function [R A] = comp(fcn,a,b)
    Ta = feval(fcn,a);
    fcn(b);
    R = Tb - Ta
    A = (Ta+Tb)/2
```

Evaluate

```
>> [R1 A1] = comp(f,1,4)
>> [R2 A2] = comp (g,1,4)
```


Formatting Output

Use fprintf

```
>> m = 12.5
>>fprintf('The value of m is
%f\n',m)
or
>>display(m)
```

Inserts the value of m where $\%$ is located f is the formatting option, there are many others that can dictate number of decimals returned
$\backslash \mathrm{n}$ starts new line in the window

See >>help/doc fprintf for the many, many formatting options

Plot a function

```
>> x = 0:.1:2;
>> f1 = @(x)(x.^2+5);
>> f2 = @(x) (x.^3-3);
>> plot(x,f1(x),--)
>> hold %wont clear current plot
>> plot(x,f2(x),'r*')
>> figure %creates new figure
>> plot(x, x^2+5*x,'go')
```

figure (\#) swaps active figure for plotting/formatting options
see >>help/doc plot for more options in plot formatting and options such as
xlabel
ylabel
legend
axes
DO NOT leave plots with unlabeled axis or blank legends

