MATLAB QUICK TUTORIAL

- Use a semi-colon (;) at the end of each line to suppress output
- For an array A(m, n), m is the row, n is the column
- Indexes start at 1
- The % symbol starts comments, use them often to easily understand your code
- (. . .) at the end of a line indicates expression continues on next line
- Get quick help with >>help command or >>doc command
- Find commands by typing first few letters then press tab

Define a scalar	>> a = 4;
Define an array	>> b = [0 1 2 3]; %only columns
(matrix or vector)	>> c = [0;1;2;3]; %only rows
	>> d = [0 1; 2 3]; %rows and columns
Define Ranges	>> x = 1:5 %fill x with vector ranging from 1 to 5
	>> $x = 5:-0.5:1$ %fill x with increment of -0.5
	>> x= linspace(1,5,10) %fill x with 10 equal spaced points
Basic Operations	+ - * / ^ .* ./ .^
	dot(.) preceding any operation is done in every element of
	the array. $A^2 = A^*A = /= A^*$
Transpose	' %takes the transpose of the matrix
	>>b = [0 1 2 3]' %makes b a row vector
Define a function	>> f = $Q(x)(x^3 - 4x)$; %arguments followed by function
	>> g = inline('x.^3 - 4*x','x') %same as above
	Create M-file (on back)
Evaluate a function	>> f(2.8) %function with arguments in parenthesis
	>> feval(g,2.8) %equivalent to above line
	>> myfcn(2.8)
	%% private function in M-file##
if structure	>> if condition
	statements %indent for ease of reading
	else
	statements
	end
	<pre>%condition arguments are:</pre>
	== equal ~= not equal
	< less than <= less than or equal to
	> greater than >= greater than or equal to
	& and ~ not or
for structure	for i = 1:5
	statements %indent for ease of reading
	end
	<pre>%loops over i incremented by 1</pre>
Selecting data	>> data = [5 10; 3 4; 7 1; 13 4; 20 17; 15 10; 12 11];
	>> data(:,1) %returns entire 1 st column
	>> data(2,:) %returns entire 2 nd row
	>> data(2:4,:) %returns rows 2-4
	>> sub = data(3,:) %sets 3 rd row as new variable
Plotting	>> plot(x,y) >>plot(x,f(x))

```
##M-file myfcn.m
    function var = myfcn(x)
    %help comments
    var = x.^3 - 4.*x;
```

Note:

var = return variable
myfcn = function name(saved as myfcn.m)
x = function argument

Example:

$$f(x) = \left(\frac{3}{x}\right)^3 - \sin(x)$$

>> f = @(x)((3./x).^3-sin(x))
Or
M-file: g.m
 function var = g(x)
 var = (3./x).^3-sin(x)

Evaluate functions

>> f(2) >> g(2)

These return the same values

Passing functions to M-files

M-file: comp.m
function [R A] = comp(fcn,a,b)
Ta = feval(fcn,a);
fcn(b);
R = Tb - Ta
A = (Ta+Tb)/2

Evaluate

>> [R1 A1] = comp(f,1,4) >> [R2 A2] = comp(g,1,4)

Formatting Output Use fprintf >> m = 12.5 >>fprintf('The value of m is %f\n',m) or >>display(m)

Inserts the value of m where % is located f is the formatting option, there are many others that can dictate number of decimals returned

 \n starts new line in the window

See >>help/doc fprintf for the many, many formatting options

Plot a function

>> x = 0:.1:2; >> f1 = @(x) (x.^2+5); >> f2 = @(x) (x.^3-3); >> plot(x,f1(x),--) >> hold %wont clear current plot >> plot(x,f2(x),'r*') >> figure %creates new figure >> plot(x,x^2+5*x,'go')

figure(#) swaps active figure for
plotting/formatting options

see >>help/doc plot for more options in
plot formatting and options such as
xlabel
ylabel
legend
axes

DO NOT leave plots with unlabeled axis or blank legends