Equation Summary
Geoff Silcox
Chemical Engineering 3453 Heat Transfer
University of Utah

Geometry

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\pi r = \pi D$</td>
<td>Circumference of circle</td>
</tr>
<tr>
<td>$4\pi r^2 = \pi D^2$</td>
<td>Area of circle</td>
</tr>
<tr>
<td>$4\pi r^2 = \pi D^2$</td>
<td>Volume of sphere</td>
</tr>
<tr>
<td>$\frac{\text{base}(\text{height})}{2}$</td>
<td>Area of triangle</td>
</tr>
</tbody>
</table>

Steady-State Conduction

Planar System

\[
\begin{align*}
\dot{Q} &= \frac{T_1 - T_2}{\frac{\Delta x_A}{k_A A} + \frac{\Delta x_B}{k_B A} + \frac{\Delta x_C}{k_C A}} \\
&= \frac{T_1 - T_2}{R_A + R_B + R_C}
\end{align*}
\]

Hollow Cylindrical System with Convection

\[
q = \frac{T_i - T_o}{\frac{1}{2\pi r_1 L h_i} + \frac{\ln(r_2 / r_1)}{2\pi k L} + \frac{1}{2\pi r_2 L h_o}} = \frac{T_i - T_o}{R_i + R_i + R_o} = \frac{T_i - T_2}{R_i}
\]
Spherical System

\[q = \frac{T_1 - T_2}{(r_2 - r_1) / (4\pi kr_1r_2)} \]

Pin Fin with Insulated Tip

\[kA \frac{d^2T}{dx^2} - hP(T - T_\infty) = 0; \quad T|_{x=0} = T_b; \quad \left. \frac{dT}{dx} \right|_{x=L} = 0 \]

\[\frac{T - T_\infty}{T_b - T_\infty} = \frac{\cosh m(L-x)}{\cosh mL}, \quad \text{where } m = \left(\frac{hP}{kA}\right)^{1/2} \]

\[q = kA_m(T_b - T_\infty) \tanh mL \]

\[\eta_f = \frac{\tanh mL}{mL} \]

Conduction with Heat Source

\[\frac{d}{dr} \left(r^{b-1} \frac{dT}{dr} \right) + \frac{\dot{q}}{k} r^{b-1} = 0; \quad \left. \frac{dT}{dr} \right|_{r=0} = 0; \quad -k \frac{dT}{dr} = h[T(R) - T_\infty] \]

\[\frac{T(r) - T_\infty}{\dot{q} R^2 / k} = \frac{1}{2b} \left[1 - \left(\frac{r}{R} \right)^2 \right] + \frac{1}{bBi} \quad \{ b = 1, \text{ plate, thickness } 2R \}
\quad \{ b = 2, \text{ cylinder, diameter } 2R \}
\quad \{ b = 3, \text{ sphere, diameter } 2R \} \]

where \(Bi = hR/k. \)

Transient Conduction

Governing Equations

Note that there is not a source term in the energy balance equation, the PDE.

\[\frac{\partial T}{\partial t} = \frac{\alpha}{r^{b-1}} \frac{\partial}{\partial r} \left(r^{b-1} \frac{\partial T}{\partial r} \right) \quad \{ b = 1, \text{ plate, thickness } 2R \}
\quad \{ b = 2, \text{ cylinder, diameter } 2R \}
\quad \{ b = 3, \text{ sphere, diameter } 2R \} \]

for \(t < 0, \quad T = T_i \)

at \(r = 0, \quad \frac{\partial T}{\partial r} = 0 \)

at \(r = R, \quad -k \frac{\partial T}{\partial r} = h(T - T_\infty) \)
Dimensionless Variables

(1) temperature \(\theta / \theta_i = [T(r,t) - T_\infty] / (T_i - T_\infty) \); (2) heat loss fraction \(Q / Q_i = Q / [\rho c V(T_i - T_\infty)] \), where \(V \) is volume; (3) distance from center \(r^* = r / R \); (4) time \(Fo = \alpha t / R^2 \); (5) Biot number \(Bi = hR / k \), and (6) \(\zeta = \beta_n R \).

Lumped Analysis (Bi < 0.1)

\[
\frac{\theta}{\theta_i} = \exp \left(-\frac{t}{\tau} \right) \quad \text{and} \quad \frac{Q}{Q_i} = 1 - \exp \left(-\frac{t}{\tau} \right) \quad \text{and} \quad \tau = \frac{\rho c V}{hA} \quad \text{(characteristic time)}
\]

Single-Term Solutions (Bi > 0.1 and Fo > 0.2)

\[
\frac{\theta}{\theta_i} = C_1 \exp \left(-\zeta_1^2 Fo \right) S_1 \left(\zeta_1 r^* \right) \quad \text{and} \quad \frac{Q}{Q_0} (C_1 \text{ and } \zeta_1 \text{ from Table 5.1 of text})
\]

<table>
<thead>
<tr>
<th>Geometry</th>
<th>(S_1)</th>
<th>(Q/Q_0)</th>
<th>(\theta_0^*) (centerline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate</td>
<td>(\cos \left(\zeta_1 r^* \right))</td>
<td>1 - (\sin \left(\zeta_1 \right) \theta_0^* / \zeta_1)</td>
<td>(\theta_0^* = C_1 \exp \left(-\zeta_1^2 Fo \right))</td>
</tr>
<tr>
<td>Cylinder</td>
<td>(J_0 \left(\zeta_1 r^* \right))</td>
<td>1 - (2\theta_0^* / \zeta_1 J_1 \left(\zeta_1 \right))</td>
<td>(\theta_0^* = C_1 \exp \left(-\zeta_1^2 Fo \right))</td>
</tr>
<tr>
<td>Sphere</td>
<td>(\sin \left(\zeta_1 r^* \right) / \zeta_1 r^*)</td>
<td>1 - (3\theta_0^* / \zeta_1^3 \left[\sin \left(\zeta_1 \right) - \zeta_1 \cos \left(\zeta_1 \right) \right])</td>
<td>(\theta_0^* = C_1 \exp \left(-\zeta_1^2 Fo \right))</td>
</tr>
</tbody>
</table>

The Semi-Infinite Solid

Constant surface temperature: \(T(0,t) = T_s \)

\[
\frac{T(x,t) - T_s}{T_i - T_s} = \text{erf} \left(\frac{x}{2\sqrt{\alpha t}} \right) \quad \text{and} \quad q_s^* = \frac{k(T_s - T_i)}{\sqrt{\pi \alpha t}}
\]

Constant surface heat flux

\[
T(x,t) - T_i = \frac{2q''(\alpha t / \pi)^{1/2}}{k} \exp \left(-\frac{x^2}{4\alpha t} \right) - \frac{q''x}{k} \text{erfc} \left(\frac{x}{2\sqrt{\alpha t}} \right)
\]

Surface convection: \(k \frac{\partial T}{\partial x} \bigg|_{x=0} = h \left[T(0,t) - T_\infty \right] \)

\[
\frac{T(x,t) - T_\infty}{T_i - T_\infty} = \text{erf} \left(\frac{x}{2\sqrt{\alpha t}} \right) + \exp \left(\frac{hx}{k} + \frac{h^2 \alpha t}{k^2} \right) \text{erfc} \left(\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k} \right)
\]
<table>
<thead>
<tr>
<th>Bi</th>
<th>Plane Wall</th>
<th>Infinite Cylinder</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\zeta_1) (rad)</td>
<td>(C_1)</td>
<td>(\zeta_1) (rad)</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0998</td>
<td>1.0017</td>
<td>0.1412</td>
</tr>
<tr>
<td>0.02</td>
<td>0.1410</td>
<td>1.0033</td>
<td>0.1995</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1723</td>
<td>1.0049</td>
<td>0.2440</td>
</tr>
<tr>
<td>0.04</td>
<td>0.1987</td>
<td>1.0066</td>
<td>0.2814</td>
</tr>
<tr>
<td>0.05</td>
<td>0.2218</td>
<td>1.0082</td>
<td>0.3143</td>
</tr>
<tr>
<td>0.06</td>
<td>0.2425</td>
<td>1.0098</td>
<td>0.3438</td>
</tr>
<tr>
<td>0.07</td>
<td>0.2615</td>
<td>1.0114</td>
<td>0.3709</td>
</tr>
<tr>
<td>0.08</td>
<td>0.2791</td>
<td>1.0130</td>
<td>0.3960</td>
</tr>
<tr>
<td>0.09</td>
<td>0.2956</td>
<td>1.0145</td>
<td>0.4195</td>
</tr>
<tr>
<td>0.10</td>
<td>0.3111</td>
<td>1.0161</td>
<td>0.4417</td>
</tr>
<tr>
<td>0.15</td>
<td>0.3779</td>
<td>1.0237</td>
<td>0.5376</td>
</tr>
<tr>
<td>0.20</td>
<td>0.4328</td>
<td>1.0311</td>
<td>0.6170</td>
</tr>
<tr>
<td>0.25</td>
<td>0.4801</td>
<td>1.0382</td>
<td>0.6856</td>
</tr>
<tr>
<td>0.30</td>
<td>0.5218</td>
<td>1.0450</td>
<td>0.7465</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5932</td>
<td>1.0580</td>
<td>0.8516</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6533</td>
<td>1.0701</td>
<td>0.9408</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7051</td>
<td>1.0814</td>
<td>1.0184</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7506</td>
<td>1.0919</td>
<td>1.0873</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7910</td>
<td>1.1016</td>
<td>1.1490</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8274</td>
<td>1.1107</td>
<td>1.2048</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8603</td>
<td>1.1191</td>
<td>1.2558</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0769</td>
<td>1.1785</td>
<td>1.5994</td>
</tr>
<tr>
<td>3.0</td>
<td>1.1925</td>
<td>1.2102</td>
<td>1.7887</td>
</tr>
<tr>
<td>4.0</td>
<td>1.2646</td>
<td>1.2287</td>
<td>1.9081</td>
</tr>
<tr>
<td>5.0</td>
<td>1.3138</td>
<td>1.2402</td>
<td>1.9898</td>
</tr>
<tr>
<td>6.0</td>
<td>1.3496</td>
<td>1.2479</td>
<td>2.0490</td>
</tr>
<tr>
<td>7.0</td>
<td>1.3766</td>
<td>1.2532</td>
<td>2.0937</td>
</tr>
<tr>
<td>8.0</td>
<td>1.3978</td>
<td>1.2570</td>
<td>2.1286</td>
</tr>
<tr>
<td>9.0</td>
<td>1.4149</td>
<td>1.2598</td>
<td>2.1566</td>
</tr>
<tr>
<td>10.0</td>
<td>1.4289</td>
<td>1.2620</td>
<td>2.1795</td>
</tr>
<tr>
<td>20.0</td>
<td>1.4961</td>
<td>1.2699</td>
<td>2.2881</td>
</tr>
<tr>
<td>30.0</td>
<td>1.5202</td>
<td>1.2717</td>
<td>2.3261</td>
</tr>
<tr>
<td>40.0</td>
<td>1.5325</td>
<td>1.2723</td>
<td>2.3455</td>
</tr>
<tr>
<td>50.0</td>
<td>1.5400</td>
<td>1.2727</td>
<td>2.3572</td>
</tr>
<tr>
<td>100.0</td>
<td>1.5552</td>
<td>1.2731</td>
<td>2.3809</td>
</tr>
<tr>
<td>∞</td>
<td>1.5708</td>
<td>1.2733</td>
<td>2.4050</td>
</tr>
</tbody>
</table>

Bi = hL/k for the plane wall and hr/k for the infinite cylinder and sphere. See Figure 5.6.