Drilling Waste and Well Site Restoration

Geoff Silcox
CH EN 6158 Energy and Society
Chemical Engineering, University of Utah

Drilling Waste: Introduction

- Mud controls subsurface pressures, lubricates drill bit, carries cuttings to surface.
- Cuttings are separated from mud and mud is recirculated
- Mud and cuttings may be contaminated with salts, hydrocarbons, heavy metals, and radioactive materials

Solidification and Stabilization

• Cuttings may need further treatment to remove excess mud.
• Cuttings may contain oil and metals that are leachable. To reduce potential hazards,
 – **Solidification** encapsulates the waste in a solid matrix
 – **Stabilization** decreases the mobility of contaminants by converting them to some other form

Solidification and Stabilization

• Additives for solidification and stabilization
 – Cement, fly ash, lime (tend to have high pH)
 – Limitations
 • Ineffective if high organics content (> 45 %)
 • Not practical for offshore applications because of equipment and space requirements
 • Additives increase volume
 • Additives may prevent plant growth and limit disposal options

Minimizing Generation of Drilling Waste and Disturbance of Surface

• Directional drilling permits drilling several wells from a single platform, extended reach drilling, and multiple laterals from a single main bore.

Minimizing Generation of Drilling Waste and Disturbance of Surface

• Directional drilling from artificial islands (City of Long Beach, CA)

Minimizing Generation of Drilling Waste and Disturbance of Surface

- Drilling smaller diameter holes
 - Closer spacing of successive casing strings
 - Slimhole drilling (90% of hole drilled with bit < 6”)
 - Coiled tubing drilling (smaller diameter than traditional pipe)
 - Mono-bore and expandable casing

Minimizing Generation of Drilling Waste and Disturbance of Surface

- Drilling techniques that use less fluid
 - Some wells do not require the use of drilling fluids
 - Pneumatic drilling uses air as circulating fluid
 - Air dust drilling
 - Air mist drilling
 - Foam drilling
 - Aerated mud drilling
 - Synthetic-based muds (SBMs) can generate lower volumes of drill cuttings than water-based muds

Using Muds and Additives with Lower Environmental Impacts

• Introduction to mud ingredients: base fluid, weighting agent, bentonite clay, detergents, etc.
 – Water-based muds (WBM)s are least expensive and can be discharged from platforms
 – Oil-based muds (OBM)s are sometimes needed with deep wells, reactive shales, extended-reach wells, horizontal drilling
 • Fluid may be diesel or mineral oil and requires special disposal for onshore wells

Using Muds and Additives with Lower Environmental Impacts

• Synthetic-based muds (SMBs)
 – Avoid the use of oils or diesel: olefins, esters, paraffins
 – Are less prone to cause sloughing and generally drill a cleaner hole with lower volume of cuttings
 – SMBs are recycled “to the extent possible”
 – New formulations are being developed that can be treated biologically

Using Muds and Additives with Lower Environmental Impacts

- Weighting agents (e.g., barite, BaSO_4)
 - $P = \rho gh$
 - Used to prevent blowout in deep wells
 - Nonmagnetic
- Possible substitute is calcite, CaCO_3

Beneficial Reuse of Drilling Wastes

- Recycling of muds
 - WBM are usually disposed of at end of drilling
 - OBM and SBM are recycled when possible
- Reuse of cuttings (most are discarded)
 - Road spreading is sometimes allowed
 - Further treatment to remove mud sometimes allows use as fill or aggregate
 - Restoration of wetlands

Onsite Burial (Pits, Landfills)

- Burial is most common onshore disposal method for cuttings and mud
 - A large landfill may be operated for multiple wells
 - Pits with liners are generally used for drilling waste, stormwater, and wastewater

Land Application

- Land application is a form of bioremediation
 - Land farming involves repeated applications of oily waste, sometimes with water, manure, straw and pretreatment by composting; however,
 - Higher molecular weight compounds degrade slowly
 - High levels of salt can accumulate
 - Land treatment involves one-time application

Bioremediation

- **Composting**
 - Waste is mixed with organic matter (e.g., husks) to increase porosity and aeration

- **Bioreactors**
 - Occurs within vessel or impoundment
 - Provide better control of temperature, nutrients, pH

Discharge to Ocean

- **U.S. Offshore Requirements for Drilling Wastes**
 - No discharge of free oil
 - No discharge within 3 miles of shore
 - Must have LC50 > 30,000 ppm (mysid shrimp test)
 - SMBs may not be discharged
 - Cuttings with up to 6.9% SMBs may be discharged
 - SMBs must satisfy biodegradation and toxicity tests
 - No discharge of formation oil

Commercial Disposal

• Why use?
 – Onsite disposal may not be allowed
 – May be more economical
• How?
 – Land farming and land filling
 – Salt taverns
 – Screen waste and inject liquids deep underground
• Cost – facilities need to be within 75-mile radius of wells because of transportation costs
• For example, a permitted, 90-acre disposal site is operated by Integrated Energy Companies (http://www.ie-cos.com/) just north of Duchesne, Utah.

Slurry Injection of Drilling Wastes

• Underground injection
 – Waste is screened and or ground and mixed with water to form slurry
 – Injected into underground formations at high pressure to fracture rock
• Types of slurry injection

Disposal in Salt Caverns

- Bedded and domal salt with chambers created by solution mining
- Surface footprint is small
- Transportation costs are limiting

Thermal Treatment of Drilling Waste

- High temperature is used to destroy hydrocarbons and immobilize metals and salts
- Cost is relatively high ($100 - $200 / ton)
- Two types of thermal treatment
 - High T in rotary kilns or cement kilns
 - Low T in thermal desorbers (usually rotary kilns): hydrocarbon vapors can be burned or collected.

Federal and State Regulations

- Disposal Practices and Applicable Regulations
 - U.S. Environmental Protection Agency (EPA)
 - Bureau of Land Management (BLM)
 - Bureau of Ocean Energy Management (BOEM)
 - Bureau of Safety and Environmental Enforcement (BSEE)
 - Utah Division of Oil, Gas, and Mining

Well Site Restoration

- Utah Administrative Code: R649-3-34
 - Governs how plugged and abandoned wells must be restored
 - For land that is under federal, Indian or state ownership, the operator must meet their requirements
 - For land that is under fee or private ownership, the operator must meet the owner’s requirements or those of the Division of Oil, Gas, and Mining

Source: R649-3-34, http://utah.eregulations.us/rule/r649-3-34