II. Energy and the First Law of Thermodynamics

A. Energy Transfer by Work. Energy is Conserved.

1. Energy can cross the boundary of a closed system by only two mechanisms: heat transfer and work transfer.

2. The change in energy of a closed system is equal to the net heat transferred to the system minus the net work performed by the system.

\[
\Delta E_{total} = \Delta E_{system} + \Delta E_{surroundings} = 0
\]

\[
\Delta E_{system} = -\Delta E_{surroundings}
\]

\[
\Delta E_{sys} = Q_{in,net} + W_{in,net}
\]

Net work in, \(W_{in,net} = W_{in} - W_{out} \)

Closed system

Net heat in, \(Q_{in,net} = Q_{in} - Q_{out} \)

Lesson 4, Geof Silcox, Chemical Engineering, University of Utah

II. Energy and the First Law of Thermodynamics

B. Mechanical work and power

1. Introduction

a. Work done by force \(F \) on a body displaced distance \(s \) is

\[
W = Fs \text{ (kJ)}
\]

\[
W = \int F \, ds \text{ (kJ)}
\]

\((2-22)\)

b. Power supplied to body moving with velocity \(V \):

\[
W = FV \text{ (kW)}
\]
II. Energy and the First Law of Thermodynamics

c. Work and heat are processes, not properties. Work and heat are represented as areas on a graph. E, e, V, T, P, m are properties and are represented by points on a graph.

d. Work and heat are also known as path functions.

\[\int_{1}^{2} dE = E_2 - E_1 = \Delta E \] (any path between states 1, 2)
\[\oint dE = 0 \text{ or } \oint dV = 0 \] (any cycle)
\[\int_{1}^{2} \delta W = W_{12} \] (not \(\Delta W \))

- Shaded area = \(-\int_{\text{cycle}} \delta W_{\text{in}} = -W_{\text{in,net}} \)

II. Energy and the First Law of Thermodynamics

2. Expansion and compression work

a. Transfer of energy to a system by boundary work requires that a force act on the boundary and that the boundary move.

b. Differential work done on the system is, for a piston of area A,

\[\delta W_{b,\text{in}} = -F \, ds = -PA \, ds = -P \, dV \]

c. Replacing F with PA is strictly correct only for a quasi-equilibrium (reversible) process.

d. The boundary work done on system is minus the area under curve

\[W_{b,\text{in}} = -\int_{V_1}^{V_2} P \, dV \] (4-2)
II. Energy and the First Law of Thermodynamics

3. Evaluation of integral

\[W_{b,in} = -\int_{V_1}^{V_2} P \, dV \]

Remember that this equation only applies to a quasi-equilibrium (reversible) process.

How can we evaluate this integral? We look at three examples:
- \(P \) may be constant (see Example 4-2).
- \(P \) may be defined by ideal gas law for an isothermal process (see Example 4-3).
- Process may be polytropic (Section 4-1).

Lesson 4, Geof Silcox, Chemical Engineering, University of Utah

II. Energy and the First Law of Thermodynamics

3. Evaluation of integral. **Example** - Air is contained in a piston-cylinder device at 500 kPa at an initial volume of 0.040 m\(^3\). The air expands to a final volume of 0.075 m\(^3\). Calculate the work output under conditions of (a) constant pressure, (b) constant temperature.

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1 = 0.040) m(^3)</td>
<td>1) Closed system.</td>
</tr>
<tr>
<td>(V_2 = 0.075) m(^3)</td>
<td>2) Quasi-equilibrium process.</td>
</tr>
<tr>
<td>(P_1 = 500) kPa</td>
<td>3) Ideal gas: (PV = mRT)</td>
</tr>
</tbody>
</table>

Lesson 4, Geof Silcox, Chemical Engineering, University of Utah
II. Energy and the First Law of Thermodynamics

3. Example (cont.)

(a) Analysis (constant pressure)

\[W_{\text{out}} = \int_{V_1}^{V_2} PdV = P(V_2 - V_1) \]

\[W_{\text{out}} = 500 \text{ kPa} \left(0.075 - 0.040\right) m^3 = 18 \text{ kJ} \]

(b) Analysis (constant temperature)

\[W_{\text{out}} = \int_{V_1}^{V_2} PdV = \int_{V_1}^{V_2} \frac{mRT}{V}dV = mRT \int_{V_1}^{V_2} \frac{dV}{V} \]

\[W_{\text{out}} = mRT \ln \left(\frac{V_2}{V_1}\right) = P_V \ln \left(\frac{V_2}{V_1}\right) \]

\[W_{\text{out}} = 500 \text{ kPa} \left(0.04 m^3\right) \ln \left(\frac{75}{40}\right) = 13 \text{ kJ} \]

Lesson 4, Geof Silcox, Chemical Engineering, University of Utah

II. Energy and the First Law of Thermodynamics

4. Polytropic process (Section 4-1 of text)

Many compression and expansion processes can be modeled as polytropic processes. The boundary work for such a process can be calculated as follows, where \(n \) is typically 1.2 or 1.3.

\[PV^n = C \text{ or } P = CV^{-n} \]

\[W_{\text{out}} = \int_{V_1}^{V_2} PdV \]

\[W_{\text{out}} = C \int_{V_1}^{V_2} V^{-n}dV = C \left. \frac{V^{1-n}}{1-n} \right|_{V_1}^{V_2} = \frac{P_2V_2 - P_1V_1}{1-n}, \quad n \neq 1 \quad (4-9) \]

For an ideal gas, \(PV = mRT \) and

\[W_{b,\text{out}} = \frac{P_2V_2 - P_1V_1}{1-n} = \frac{mR(T_2 - T_1)}{1-n}, \quad n \neq 1 \quad (4-10) \]

Lesson 4, Geof Silcox, Chemical Engineering, University of Utah