II. Energy and the First Law of Thermodynamics

A. Generic Statement of the First Law for a Closed System

\[
\frac{\text{time rate of change of energy within system}}{\text{system}} = \left(\frac{\text{rate energy enters system}}{\text{system}} \right) - \left(\frac{\text{rate energy leaves system}}{\text{system}} \right)
\]

No mass enters or leaves.

Rate form of energy balance:

\[
\frac{dE_{\text{system}}}{dt} = \dot{E}_{\text{in}} - \dot{E}_{\text{out}} \tag{4-12}
\]

Integrated form of energy balance:

\[
\Delta E_{\text{system}} = E_{\text{in}} - E_{\text{out}} \tag{4-11}
\]

Note: \[
\Delta E_{\text{system}} + \Delta E_{\text{surroundings}} = 0
\]

II. Energy and the First Law of Thermodynamics

B. Specific Statement of First Law for a Closed System

1. Energy is conserved.
2. Energy can cross the boundary of a closed system by only two mechanisms: heat transfer and work transfer.
3. The change in energy of a closed system is equal to the net heat transferred to the system minus the net work performed by the system (4-17).

Total energy:

\[
\Delta E = Q_{\text{in,net}} - W_{\text{out,net}} \ (\text{kJ})
\]

\[E = mu + \frac{1}{2}mV^2 + mgz \ (\text{kJ})\]

The differential form of (4-17):

\[
dE = \delta Q_{\text{in,net}} - \delta W_{\text{out,net}} \ (\text{kJ})
\]

Energy per unit mass:

\[
\Delta e = q_{\text{in,net}} - w_{\text{out,net}} \ (\text{kJ/kg})
\]

\[e = u + \frac{1}{2}V^2 + gz \ (\text{kJ/kg})\]

\[w = \frac{W}{m} \quad \text{and} \quad q = \frac{Q}{m}\]

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah
II. Energy and the First Law of Thermodynamics

4. (Rate form) The rate of change in energy of a closed system is equal to the rate of heat transfer to the system, minus the rate of work performed by the system plus.

\[
\frac{dE}{dt} = Q_{in,net} - W_{out,net} (\text{kW})
\]

Integration gives the previous form, (4-17):

\[
\Delta E = \int_{t_i}^{t_f} \frac{dE}{dt} dt = \int_{t_i}^{t_f} Q dt = \int_{t_i}^{t_f} W dt
\]

\[
\Delta E = Q_{in,net} - W_{out,net} (\text{kJ})
\]

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah

II. Energy and the First Law of Thermodynamics

5. Example 1 (ideal gas). Two rigid, insulated chambers are connected by a valve. Chamber A is filled with air at 10 bar (gage) and 300 K and B is empty. Both chambers have a volume of 0.10 m³. The air is modeled as an ideal gas. Now open the valve and allow the system (chambers A and B) to reach equilibrium. Find the change in \(U \) and \(T \).

\[
\Delta U = c_v m (T_2 - T_1) = 0 \quad PV = mRT = \text{constant}
\]

Because \(U \) is constant and a function of only \(T \) (because the air behaves as an ideal gas) this is a constant temperature process. Joule verified this experimentally.

\[
\therefore \text{At equilibrium, } T_1 = T_2 \text{ and } P_1V_1 = P_2V_2. \text{ This is an irreversible process.}
\]

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah
II. Energy and the First Law of Thermodynamics

6. Example 2 (ideal gas). A cylinder, containing $V_1 = 2.0 \text{ L}$ of air at 11 bar (gage) and 300 K, is fitted with a frictionless piston. The constant atmospheric pressure outside the cylinder is 1 bar. The air expands reversibly and isothermally to a final pressure of 0 bar (gage). Treating the air as an ideal gas, calculate Q_{in}, W_{out}, and V_2.

First Law: $\Delta U = Q_{in} - W_{out} = 0 \Rightarrow Q_{in} = W_{out}$

Reversible expansion: $W_{out} = \int_{V_1}^{V_2} PdV$

Calculate work:

$$W_{out} = \int_{V_1}^{V_2} PdV = mRT \int_{1}^{2} \frac{dV}{V} = mRT \ln \frac{V_2}{V_1} = P_1V_1\ln \frac{P_1}{P_2}$$

$W_{out} = Q_{in} = P_1V_1\ln \frac{P_1}{P_2} = (1200 \text{ kPa})(0.002 \text{ m}^3)\ln \frac{12}{1} = 5.964 \text{ kJ}$

Calculate final volume:

$$V_2 = V_1\frac{P_1}{P_2} = 0.002\frac{12}{1} = 0.024 \text{ m}^3$$

Note: in using the ideal gas law, always use absolute pressure rather than gage.
II. Energy and the First Law of Thermodynamics

7. Example 3 (ideal gas). A cylinder containing 2.0 L of air at 11 bar (gage) and 300 K is fitted with a frictionless piston. The constant atmospheric pressure outside the cylinder is 1 bar. The air is expanded reversibly and adiabatically to a final pressure of 0 bar (gage). Treating the air as an ideal gas, calculate Q_{in}, W_{out}, V_2 and T_2.

First Law: $\Delta U = Q_{in} - W_{out}$

Reversible expansion:

$W_{out} = \int_{1}^{2} P \, dV$ or $\delta W = P \, dV (kJ)$ or $\delta w = P \, dv (kJ/kg)$

Recall that

$u = \frac{5}{2} RT$ or $du = \frac{5}{2} RdT$ or $du = c_v \, dT$

Ideal gas: $Pv = RT$ or $P = \frac{RT}{v}$

Integrate 1st law: $c_v \int_{1}^{2} \frac{dT}{T} = -R \int_{1}^{2} \frac{dv}{v}$ or $c_v \ln \frac{T_2}{T_1} = -R \ln \frac{v_2}{v_1}$

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah
II. Energy and the First Law of Thermodynamics

Rearrange: \(c_v \ln \frac{T_2}{T_1} = -R \ln \frac{V_2}{V_1} \) to give \(\frac{T_2}{T_1} = \left(\frac{V_1}{V_2} \right)^{\frac{R}{c_v}} \)

By convention, this is written

\[
\frac{T_2}{T_1} = \left(\frac{V_1}{V_2} \right)^{k-1} \quad \text{or} \quad TV^{k-1} = \text{constant}
\]

where \(k = \frac{R}{c_v} + 1 \)

For air at room temperature, \(k = \frac{7}{5} = 1.4 \).

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah

II. Energy and the First Law of Thermodynamics

Use the ideal gas law to rearrange previous equation: \(\frac{T_2}{T_1} = \frac{v_2P_2}{v_1P_1} \)

\[
\frac{P_2}{P_1} = \left(\frac{v_1}{v_2} \right)^k \quad \text{or} \quad PV^k = \text{constant}
\]

\[
\frac{T_2}{T_1} = \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} \quad \text{or} \quad TP^{\frac{1-k}{k}} = \text{constant}
\]

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah
II. Energy and the First Law of Thermodynamics

We are finally ready to calculate Q_{in}, W_{out}, V_2 and T_2.

$Q_{in} = 0$ because the process is adiabatic.

\[
W_{out} = -\Delta U = m c_v \left(T_1 - T_2 \right)
\]
\[
= m c_v T_1 \left(1 - \frac{T_2}{T_1} \right) = m c_v T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} \right]
\]
\[
= \frac{5}{2} PV_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{2}{7}} \right] = \frac{5}{2} (1200 \text{ kPa})(0.002 \text{ m}^3) \left[1 - \left(\frac{1}{12} \right)^{\frac{2}{7}} \right] = 3.050 \text{ kJ}
\]

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah

II. Energy and the First Law of Thermodynamics

Calculate T_2 and V_2.

\[
T_2 = T_1 \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} = 300 \text{ K} \left(\frac{1}{12} \right)^{\frac{2}{7}} = 147.5 \text{ K}
\]

\[
\frac{T_2}{T_1} = \left(\frac{V_1}{V_2} \right)^{\frac{R}{c_v}} \text{ or } \frac{V_1}{V_2} = \left(\frac{T_2}{T_1} \right)^{\frac{c_v}{R}}
\]

\[
V_2 = \frac{V_1}{\left(\frac{T_2}{T_1} \right)^{\frac{c_v}{R}}} = \frac{0.002 \text{ m}^3}{\left(\frac{147.5}{300} \right)^{\frac{5}{7}}} = 0.01180 \text{ m}^3
\]

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah
II. Energy and the First Law of Thermodynamics

8. Example 4. Work done against the atmosphere and net work available in Examples 2, 3.

In Examples 2 and 3, we have not considered the work done against the atmosphere. In both cases that will be

\[W_{atm} = \int_{V_1}^{V_2} P_{atm} \, dV = P_{atm} (V_2 - V_1) \]

In Example 2, \(W_{atm} = 100 \text{kPa}(0.0240 - 0.002) \text{m}^3 = 2.20 \text{kJ} \)

The net work available in Ex. 2 is \(W_{net,out} = 5.96 - 2.20 = 3.76 \text{kJ} \).

In Example 3, \(W_{atm} = 100 \text{kPa}(0.0118 - 0.002) \text{m}^3 = 0.980 \text{kJ} \)

The net work available in Ex. 3 is \(W_{net,out} = 3.05 - 0.98 = 2.07 \text{kJ} \).

II. Energy and the First Law of Thermodynamics

A 2-L, plastic soda bottle is filled with air at 11 bar (gage) and 300 K. The atmospheric pressure is 1 atm. The bottle suddenly explodes. Estimate the energy released.

Key assumptions: (1) ideal gas, (2) adiabatic. This process is highly irreversible.

First Law:

\[\Delta U = Q_{in} - W_{out} \]

Work performed:

\[W_{out} = W_{atm} = P_{atm} (V_2 - V_1) = P_2 (V_2 - V_1) \]

Ideal gas:

\[PV = mRT \text{ or } V_2 = \frac{mRT_2}{P_2} \]

Change in U:

\[u = \frac{5}{2}RT \text{ or } \Delta U = mc_v (T_2 - T_1) \text{ where } c_v = \frac{5}{2}R \]
II. Energy and the First Law of Thermodynamics

From first law: \(\Delta U = -W_{\text{out}} \) or \(mc_v (T_2 - T_1) = P_{\text{atm}} (V_1 - V_2) \)

Solving for \(T_2 \):
\[
T_2 = T_1 \left(1 + \frac{c_v}{R} \right) = \frac{1}{2} \left(1 + \frac{5}{2} \right) = 221.4 \text{ K}
\]

Energy released:
\[
W_{\text{out}} = -\Delta U = mc_v (T_1 - T_2) = P_1 V_1 \frac{c_v}{R} \left(1 - \frac{P_2 + c_v}{P_1 + \frac{c_v}{R}} \right)
\]
\[
W_{\text{out}} = \left(1200 \text{ kPa} \right) \left(0.002 \text{ m}^3 \right) \left[\frac{5}{2} \left(1 + \frac{5}{2} \right) \right] = 1.57 \text{ kJ}
\]

II. Energy and the First Law of Thermodynamics

10. Summary of relations used to calculate work in ideal gas, closed system (batch), compression and expansion processes.

- **Isobaric** (constant pressure): \(P = \text{constant} \)
- **Isothermal**: \(PV = \text{constant} \)
- **Adiabatic and reversible**: \(PV^k = \text{constant} \) where \(k = \frac{R}{c_v} + 1 \)
- **Polytropic**: \(PV^n = \text{constant} \), where \(1 < n < k \) (most of the time)

\[
W_{\text{out.poly}} = \frac{P_2 V_2 - P_1 V_1}{1 - n} = \frac{mR(T_2 - T_1)}{1 - n}, \quad n \neq 1
\]
II. Energy and the First Law of Thermodynamics

11. Final remarks on reversible and actual processes
 a. Examples 2 and 3 involved batch reversible expansion processes. Actual processes deliver less work than reversible processes. Define an efficiency to account for this:

 \[W_{\text{actual}} = \eta W_{\text{reversible}}, \quad 0 < \eta < 1, \text{ expansion} \]

 b. Actual compression processes require more work than reversible compression processes. Define an efficiency to account for this:

 \[W_{\text{actual}} = \frac{W_{\text{reversible}}}{\eta}, \quad 0 < \eta < 1, \text{ compression} \]

 For batch compression and expansion processes, \(\eta \approx 0.75 \). The efficiency must be determined experimentally.

Lesson 6, Geof Silcox, Chemical Engineering, University of Utah