VII. Power and Refrigeration Cycles

C. The Carnot Power Cycle for an Ideal Gas

1. Description

- 1-2 reversible, isothermal expansion
- 2-3 reversible, adiabatic expansion
- 3-4 reversible, isothermal compression
- 4-1 reversible, adiabatic compression

\[T_H = \text{constant} \]
\[T_L = \text{constant} \]

\[Q_H \]
\[Q_L \]

\[W_{\text{net,out}} = 0 \]

\[Q_{23} = 0 \]

\[s_2 = s_3 \]

\[s_4 = s_1 \]

2. Analysis

- 1-2 rev., isothermal expansion
 \[Q_H = -W_{1-2} = mRT_H \ln \frac{v_2}{v_1} \]
- 2-3 rev., adiabatic expansion
 \[Q_{2-3} = 0 \]
- 3-4 rev., isothermal compression
 \[Q_L = W_{3-4} = mRT_L \ln \frac{v_3}{v_4} \]
- 4-1 rev., adiabatic compression
 \[Q_{4-1} = 0 \]

\[\eta_{\text{th,rev}} = \frac{W_{\text{net,out}}}{Q_H} = 1 - \frac{Q_L}{Q_H} \]

\[\eta_{\text{th,rev}} = 1 - \frac{mRT_L \ln \frac{v_3}{v_4}}{mRT_H \ln \frac{v_2}{v_1}} \]
VII. Power and Refrigeration Cycles

2. Analysis (cont.)

\[\frac{T_3}{T_2} = \frac{T_L}{T_H} \left(\frac{v_2}{v_3} \right)^{k-1} \]

\[\frac{T_4}{T_1} = \frac{T_L}{T_H} \left(\frac{v_1}{v_4} \right)^{k-1} \]

\[\frac{v_3}{v_4} = \frac{v_2}{v_1} \]

This was derived for an ideal gas but applies to all working substances.

\[\eta_{th,rev} = 1 - \frac{mRT_L \ln \frac{v_2}{v_4}}{mRT_H \ln \frac{v_2}{v_1}} = 1 - \frac{T_L}{T_H} \]

(6-18)

D. Gas Power Cycle for Spark Ignition, Internal Combustion Engines (Otto Cycle)

1. Definitions
 a. top dead center (TDC)
 b. bottom dead center (BDC)
VII. Power and Refrigeration Cycles

1. Definitions (cont.)
 c. mean effective pressure
 \[W_{\text{net, out}} = (\text{mep})(V_{\max} - V_{\min}) \]
 d. compression ratio
 \[r = \frac{V_{\max}}{V_{\min}} = \frac{V_{\text{BDC}}}{V_{\text{TDC}}} \]

2. The Air Standard Otto Cycle. The Otto cycle is used to model two- and four-stroke engines. The working fluid is air.

 1-2 Isentropic compression. Flywheel carries piston into cylinder to give \(w_{\text{in}} \).

 2-3 Isometric heat addition. Combustion of gasoline provides heat addition \(q_{\text{in}} \).

 3-4 Isentropic expansion. Hot gas expands against piston to do work \(w_{\text{out}} \).

 4-1 Isometric heat removal. In four-stroke engines, hot gases are exhausted (1-0) and fresh air is drawn in (0-1). Steps (1-0) and (0-1) are not part of the two-stroke Otto cycle.
VII. Power and Refrigeration Cycles

3. Efficiency of Otto Cycle (Two- and Four-Stroke)
 a. Otto cycle is closed

 \[\eta_{\text{th,otto}} = \frac{w_{\text{net.out}}}{q_{\text{in}}} = \frac{q_{\text{in}} - q_{\text{out}}}{q_{\text{in}}} = 1 - \frac{q_{\text{out}}}{q_{\text{in}}} \]

 b. heat transfer occurs at constant volume

 \[q_{\text{in}} = u_3 - u_2 = C_v (T_3 - T_2) \]
 \[q_{\text{out}} = u_4 - u_1 = C_v (T_4 - T_1) \]

 \[\therefore \eta_{\text{th,otto}} = 1 - \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{T_1}{T_2} \left(\frac{T_4}{T_3} - 1 \right) \]

 c. power stroke (3-4) and compression stroke (1-2) are isentropic with

 \[v_2 = v_3 \quad \text{and} \quad \eta_{\text{th,otto}} = 1 - \frac{T_1}{T_2} \left(\frac{T_4}{T_3} - 1 \right) \]

 Then

 \[\frac{T_1}{T_2} = \left(\frac{v_2}{v_1} \right)^{k-1} = \left(\frac{v_3}{v_4} \right)^{k-1} = \frac{T_4}{T_3} \]

 \[\eta_{\text{th,otto}} = 1 - \frac{T_1}{T_2} \left(\frac{T_4}{T_3} - 1 \right) = 1 - \frac{1}{r^{k-1}} \]

 where \(k = \frac{C_p}{C_v} \) and \(r = \frac{v_1}{v_2} \)
VII. Power and Refrigeration Cycles

d. conclusions for Otto cycle

- η increases with increasing compression ratio, r, and k
- typical values of r are 7 to 10
- for $r = 8$ and $k = 1.4$, $\eta_{\text{th,otto}} = 56.5\%$
- actual efficiencies are 25 to 30%