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1.0 Reporting the Uncertainty in a Measured Quantity 
At the request of your supervisor, you have ventured out into the plant and have 
measured the yield for a compound in a plug flow reactor in a series of ten 
experiments.  The conditions in the plant are always varying, but you have tried 
to make your measurements during periods of relative stability.  Your results 
(Box et al., 1978) are tabulated in Table 1 in the order in which they were 
collected.  What is the best way to present the results to your supervisor?  How 
can you estimate the uncertainty in the yield?  Your first thought is to give her 
Table 1.   

 
 

Table 1  Reactor Yield  
 

Run No. Yield
1 89.7
2 81.4
3 84.5
4 84.8
5 87.3
6 79.7
7 85.1
8 81.7
9 83.7
10 84.5

 
 

You also have a dim recollection of some statistical quantities.  You dig 
out your statistics notes and find the following definitions.  For a set of n 
observations, yi, 
 

sample average =  /iy y n= ∑                                    (1) 
 

sample variance = ( ) ( )22 / 1is y y n= − −∑                           (2) 
 

sample standard deviation = ( ) ( )2 / 1is y y n= − −∑                   (3) 
 

variance of sample average = 2( ) /V y s n=                          (4) 
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standard deviation of sample average = /u s n=                   (5) 
 
The sample average, standard deviation, and standard deviation of the average 
are given in Table 2 for the data in Table 1.  These quantities, with the exception 
of u, were calculated using the built in functions in Excel. 
 
 

Table 2  Statistical Quantities for Data in Table 1 
 

Statistic Value 
y  84.24 
s 2.902 
u 0.9176

 
 
You want to report the average value of the yield but you would also like to 
provide an estimate of the uncertainty in the average.  Two terms are central to 
any discussion of uncertainty analysis (Kline and McClintock, 1953).  An error is 
defined as the difference between the true and the observed value of some 
quantity.  Only estimates of the error can be made because the true value is 
unknown.  The uncertainty is a possible value that an error might have.  The 
uncertainty is an estimate of the experimental error.  The definitions of 
uncertainty and error are not the same as the definitions of accuracy and 
precision.   
 
Uncertainty analysis is useful for (i) estimating the possible values that an error 
may have, (ii) determining if unaccounted errors must be included in an 
estimation of results, and (iii) designing experiments to minimize errors.  
Uncertainty analysis generally considers four different types of errors:  (i) errors 
from scale interpolation, (ii) errors from time-wise jitter, (iii) bias errors, and (iv) 
calibration errors.   
 
Uncertainties are always determined for a particular confidence level.  A 
confidence level of 95 percent is commonly used in engineering.  A 95 percent 
confidence level means that 95 percent (or 19 out of 20) of the measurements 
will fall within the uncertainty interval, i.e., the odds are 20:1.  The higher the 
confidence level, the larger the uncertainty.   

 
An uncertainty is meaningless unless it includes a confidence level.  For 
example, the measured value of y should be reported as  

 
(95 % )y y y confidence levelδ= ±                                (6) 

 
where y  is the best estimate of the yield (the sample average) and δy is the 
uncertainty interval.  For errors that follow a normal probability distribution, 95 
percent of the measurements will fall within plus or minus 1.96 standard 
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deviations of the best estimate.  Hence, the uncertainty for a 95 percent 
confidence level for the data in Table 1 is given by 
 

1.96y uδ =                                                      (7) 
 
where u is calculated from Eqn. 5.  In your report, you need to give Tables 1 and 
2 and you should report the yield as 
 

y = 84 ± 2  (confidence level 95 %) 
 
In general, only one significant figure should be used for the estimated 
uncertainty.  Uncertainties for confidence levels ranging from 0.80 to 0.99, based 
on the normal distribution, are given in Table 3. 
 
 

Table 3  Uncertainty as a Function of Confidence 
Level for Normally Distributed Errors 

 
Confidence 
Level 

Uncertainty, 
δy 

0.80 1.28u 
0.90 1.64u 
0.95 1.96u 
0.99 2.58u 

 
 
The assumption made above in the calculation of uncertainty is that the errors 
are normally distributed.  For finite samples this is not strictly correct and 
uncertainties should actually be estimated using the t-distribution (Box et al., 
1978; Gonick and Smith, 1993).  The t-distribution is more spread out than the 
normal distribution and hence the uncertainties based on it are larger.  We will 
not pursue this further in these notes. 

2.0  Propagating Uncorrelated Uncertainties  
In the situation described above, we had 10 values of the reactor yield and we 
were able to estimate the uncertainty interval on the sample average using (5), 
(6), and (7).  In many cases we do not have this opportunity because the 
experiments are too costly or time consuming.  We may be limited to a single 
sample.  But we often know the uncertainty level in the variables that are used to 
calculate a desired quantity and we can use these to estimate the uncertainty in 
the final result.  The equations below allow you to estimate the uncertainty in a 
single sample experiment and they give you a way of propagating the 
uncertainties through a calculation.   
 
In what follows, σ is the estimated uncertainty on each quantity.  From the 
equations outlined below, you can estimate the uncertainty in a dependent 
variable given the uncertainties in the independent variables.  If  
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a = b + c 

 
or 
 

a = b - c 
 
then 
 

2 2 2
a b cσ σ σ= +                                                   (8) 

 
If 
 

f = xy 
 
or 
 

f = x/y 
 
then 
 

22 2
yf x

f x y
σσ σ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                                        (9) 

 
In general,  

 
f = f(x1,x2,...,xn) 

 
and 
 

2
2
f i

i

f
x

σ σ
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠
∑                                               (10) 

 
Equations 8, 9, and 10 only apply for small uncertainties.  A more general way to 
propagate uncertainties is to use a numerical approach as follows (Lyons, 1991).  
This approach applies no matter how large the uncertainties. 
 
(i)  Set all xi equal to their measured values and calculate f.  Call this fo. 
 
(ii)  Find the n values of f defined by   
 

fi = f(x1,x2,...,xi+σi,...,xn)                                       (11) 
 
(iii)  Obtain σf from  
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( )22
f i of fσ = −∑                                              (12) 

 
If the uncertainties are small this should give the same result as (10).  If the 
uncertainties are large, this numerical approach will provide a more realistic 
estimate of the uncertainty in f.  The numerical approach may also be used to 
estimate the upper and lower values for the uncertainty in f because the fi in (11) 
can be calculated with xi+σ replaced by xi-σ. 
 
For example, consider the measurement of the velocity of an air stream inside a 
duct using a pitot-static tube (Kline and McClintock, 1953).  If c is the air velocity, 
∆p is the pressure difference, and pa and Ta are the pressure and temperature of 
the air, then the gas velocity is given by 

 
2( ) a

a

p RTc
p

∆
=                                                (13) 

 
Suppose that Ta is measured with a calibrated, mercury-in-glass thermometer, pa 
with a Bourdon gage, and ∆p with a U-tube manometer.  The readings are 
 
 ∆p = 8.0 ± 0.1 in. H2O  (confidence level 95 %) 
 Ta = 527.1 ± 0.2°R  (confidence level 95 %) 
 pa = 14.7 ± 0.3 psia  (confidence level 95 %) 
 
Evaluation of the derivatives, ∂c/∂xi, and substitution in (10) gives (after taking 
the square root) 

 

( )
1/ 2

2 2 2
3

( )1 1 1 ( )( ) ( )
2 ( ) 2 2

a a
C P Pa Ta

a a a a

RT p RT R p
p p p T p

σ σ σ σ∆

⎧ ⎫∆ ∆
= + +⎨ ⎬∆⎩ ⎭

        (14) 

 
Dividing (14) by (13) simplifies (14) by making it dimensionless. 

 
1/ 22 22

1 1 1
2 2 2

C Pa TaP

a ac p p T
σ σ σσ∆

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
                        (15) 

 
Substituting the temperature and pressures in (15) gives 

 
1/ 24 4 71 1.56 10 4.16 10 1.44 10 0.01197 1.2%

2
C x x x or

c
σ − − −⎡ ⎤= + + =⎣ ⎦        (16) 

 
From (16) it is clear that improving the measurement of Ta will have little impact 
on σC/c.  The largest effect on σC/c will come from improving the measurement of 
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pa.  This could be accomplished by using a pressure transducer or manometer 
instead of a Bourdon gage.   
 
Now try the same calculation using the spread sheet method.  The dimensionless 
form of (12) is (after taking the square root) 
 

1/ 22

0 0

1f if
f f
σ ⎡ ⎤⎛ ⎞

⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑                                        (17) 

 
The propagated fractional uncertainties using (15) and (17) are compared in 
Table 4.   
 
A further advantage of the numerical approach is that it can be used with 
simulations.  In other words, the function f in (12) could be a complex 
mathematical model of a distillation column and f might be the mole fraction or 
flow rate of the light component in the distillate. 
 

Table 4  Uncertainties in Gas Velocity Calculated from (15) and (17) 
 

Equation Used σf/f0 
(9) 0.011968 
(12) with +σ 0.011827 
(12) with -σ 0.012113 

 
 

3.0  Estimating Uncertainties 
The uncertainty cannot always be calculated from a set of data, like that in Table 
1, using (5), (6), and (7).  Instead, you must rely on engineering judgement and 
experience.  Some rough guidelines for estimating the uncertainty with a 95 
percent confidence level follow.  For analogue scales, use 1/2 the smallest scale 
division and for digital scales, use 1/2 the value of an increment for the least 
significant digit.  For a reading that is jittery, use the range of the variable that 
includes roughly 95 percent of the readings.   

4.0  Combining Results from Several Sets of Measurements 
You may want to combine results from two groups or laboratories.  The 
combination is weighted using the uncertainties as follows (Lyons, 1991; Young, 
1963) 

 
( ) ( )2 2/ / 1/i i ia a σ σ= ∑ ∑                                      (18) 

 
and the uncertainty on the combined result is given by 
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( )∑ σ=σ 2
i

2 /1/1                                            (19) 
 
For example, two labs are reporting the speed of light as (Young, 1963) 
 

c1 = 299,774 ± 2 km/s  (confidence level 95 %) 
c2 = 299,778 ± 4 km/s  (confidence level 95 %) 

 
From (18) the most probable value of c is 299,775 km/s and from (19) the 
uncertainty is 2 km/s.   

5.0  Linear Least Squares Fitting 
A particular theory will frequently tell us that data should plot as a straight line.  
This is a powerful way of testing whether data agree with theory.  The following 
example will use this technique to see if a mixing tank can be assumed perfectly 
mixed.  In chemical process control, for example, we frequently assume 
simplified models for complex processes and design our controllers based on 
those simplified models.  Perfect mixing is a common simplifying assumption. 
 
The mixing tank is sketched in Fig. 1.  The perfect mixing hypothesis will be 
tested using temperature data (Marlin, 1995).  The volume of the tank (V) is 2.7 
m3, the volumetric flow rate (F) is 0.71 m3/min., and the initial steady temperature 
of the fluid (T0) is 103.5 C.  At the beginning of the experiment, the inlet 
temperature (Ti) is suddenly changed from 103.5 to 68 C and the data shown in 
Table 5 are collected.  We will test our perfect mixing assumption by seeing if a 
model of the process, developed with this assumption, agrees with the data. 
 
 

F, Ti F, T
V, T

 
 
 

Figure 1  Schematic of mixing tank of volume V with volumetric flow 
rate F.  The temperature of the fluid at the outlet of the tank, T, is 
the same as the temperature of the entire contents of the tank, 
assuming that the contents are perfectly mixed. 
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Table 5  Temperature data for mixing  
tank shown in Fig. 1 (Marlin, 1995). 

 
 

t, min. T, C 
0 103.5 
0.4 102 
1.2 96 
1.9 91 
2.7 87 
3.4 84 
4.2 81 
5 79 
6.5 76 
8.5 73 

 
 
An energy balance over the tank, assuming that it is perfectly mixed, gives a 
differential equation for the rate of change of temperature with time, 
 

( )i
dTcV F c T T
dt

ρ ρ= −                                        (20) 

 
where the density and heat capacity of the fluid are ρ and c.  The initial condition 
for (20) is  
 

T(0) = T0                                              (21) 
 
We can simplify (20) by defining 
 

0 0

i

i

T T
T T

V
F

θ
θ

τ

= −

= −

=

                                           (22) 

 
 
The mean residence time of a particle of fluid in a perfectly mixed tank is τ.  For 
our problem, 
 

2.7 3.8 min.
0.71

V
F

τ = = =                                      (23) 

 
The solution to (20) and (21) is 
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τ
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ
θ tln
0

                                              (24) 

 
or 
 

τ−=
−
−

=
θ
θ /t

i0

i

0
e

TT
TT                                         (25) 

 
Now we are ready to test our model against the data.  If we plot -ln(θ/θ0) vs. t, 
the slope of the data should be 1/τ and the intercept should be zero, provided our 
assumption of perfect mixing is correct.  Using the Regression Analysis Tool in 
Excel and the data in Table 5 gives the linear least squares fit shown in Fig. 2. 
 
The slope and intercept are 0.235 ± 0.003 min-1 and -0.02 ± 0.01.  The 
Regression Analysis Tool in Excel estimates the uncertainties (it calls them 
standard errors) and allows you to specify the confidence level.  I used a 
confidence level of 95 percent.  The time constant we calculate from the least 
squares fit of the data is 4.3 min. versus the value of 3.8 min. we calculated from 
V and F.  We conclude that the assumption of perfect mixing is probably 
adequate for modeling this system. 
 

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Time, min.
 

 
Figure 2  Linear least squares fit of Eqn. 19 to the data of Table 4. 
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6.0  Nonlinear Least Squares Fitting 
The design of a PID controller for a process makes use of correlations that 
generally require three input variables:  the steady state process gain (KP), the 
process time constant (τ), and the process dead time (α).  We can obtain these 
variables by performing experiments on the process and then fitting a simplified 
model to the data.  Typical data from an experiment on a reactor are shown in 
Fig. 3 (Marlin, 1995). 
 
In the experiment, the input is the valve position (% open) and the output is the 
temperature (C) of the reactor at some location.  For the results shown in Fig. 3, 
the valve position was stepped from 30 to 38 percent open.  The temperature of 
the reactor rose about 6 degrees in response to this change.  Our tuning 
parameters, KP, α, and τ, are obtained by fitting the following model to the data, 
 

( )( )/( ) 1 ,t
Py t K e tα τδ α−= − ≥                                     (26) 

 
where δ is the change in the valve position and y(t) is the resulting change in 
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Figure 3  Reactor data used to obtain KP, α, and τ. 
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temperature.  For our experiment, δ is 8 percent open.  We need to obtain a least 
squares fit of (26) to the data in Fig. 3.  We can accomplish this using statistical 
software packages.  We can also use the Solver Tool in Excel to obtain the fit 
shown in Fig. 4, where a time of zero minutes corresponds to the time at which 
the valve position is changed in Fig. 3.  The spreadsheet used to perform the 
least squares calculations is shown in Fig. 5. 
 
The calculation involves minimizing the sum of the squared residuals.  In the 
spreadsheet you calculate the quantity 
 

( )2
,i i thesum of squared residuals y y= −∑                        (27) 

 
and minimize its value using the Solver.  The Solver adjusts the values of KP, α, 
and τ to find the minimum.  In (27), the yi are the measured changes in the 
reactor temperature and the yi,the are the changes calculated from (26).  The 
Solver determines values of KP, α, and τ of 0.764 C/% open, 12.4 min., and 16.3 
min.  This approach provides a convenient way of performing nonlinear least 
squares fitting but it provides no estimates of the uncertainties on KP, α, and τ.  
Equation 12 provides a way of estimating these uncertainties if the uncertainties 
on the individual temperatures are known. 
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Figure 4  Least squares fit of (20) to the reactor data shown in Fig. 3. 
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The calculation involves minimizing the sum of the squared residuals.  In the 
spreadsheet you calculate the quantity 
 

( )2
,i i thesum of squared residuals y y= −∑                        (27) 

 
and minimize its value using the Solver.  The Solver adjusts the values of KP, α, 
and τ to find the minimum.  In (27), the yi are the measured changes in the 
reactor temperature and the yi,the are the changes calculated from (26).  The 
Solver determines values of KP, α, and τ of 0.764 C/% open, 12.4 min., and 16.3 
min.  This approach provides a convenient way of performing nonlinear least 
squares fitting but it provides no estimates of the uncertainties on KP, α, and τ.  
Equation 12 provides a way of estimating these uncertainties if the uncertainties 
on the individual temperatures are known. 
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Data

Initial T, C 69.974
Delta, % 8

Guessed quantities (fitting parameters)

Kp, C/% 0.764
tau, min. 16.280
theta, min. 12.348

Time, min Adjusted Input, Output, C Output', C Theory Resid Resid^2
time, min % open

0 30 69.65 -0.324
4 30 69.7 -0.274
8 30 70.41 0.436
12 30 70.28 0.306
16 30 69.55 -0.424
20 30 70.32 0.346

23.999 30 69.97 -0.004
24 0 38 69.97 -0.004 0.000
28 4 38 69.96 -0.014 0.000
32 8 38 69.68 -0.294 0.000
36 12 38 70.22 0.246 0.000
40 16 38 71.32 1.346 1.229 0.118 0.014
44 20 38 72.33 2.356 2.293 0.063 0.004
48 24 38 72.92 2.946 3.125 -0.179 0.032
52 28 38 73.45 3.476 3.776 -0.300 0.090
56 32 38 74.09 4.116 4.286 -0.169 0.029
60 36 38 75 5.026 4.684 0.342 0.117
64 40 38 75.25 5.276 4.996 0.281 0.079
68 44 38 74.78 4.806 5.239 -0.433 0.187
72 48 38 75.27 5.296 5.430 -0.133 0.018
76 52 38 75.97 5.996 5.579 0.417 0.174
80 56 38 76.3 6.326 5.696 0.631 0.398
84 60 38 76.3 6.326 5.787 0.540 0.291
88 64 38 75.51 5.536 5.858 -0.322 0.103
92 68 38 74.86 4.886 5.914 -1.027 1.056
96 72 38 75.86 5.886 5.958 -0.071 0.005
100 76 38 76.2 6.226 5.992 0.235 0.055
104 80 38 76 6.026 6.018 0.008 0.000

(sum of residuals)^2 = 2.653  
 
 

Figure 5  Excel spreadsheet used to fit (26) to the data in Fig. 3. 
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