Chapter 5

A

Light Scattering

erosol light scattering plays a major role in the design of aerosol measurement

systems (discussed in the next chapter) and radiation transfer through the atmo-

sphere. There are also technological applications in combustion and production of
powdered materials. This chapter provides an introduction to the subject.

In broad outline, the problem of light scattering by clouds of small particles can be
formulated as follows: Scattering by an individual particle depends on its size, refractive
index and shape, and the wavelength of the incident light. There is an extensive literature
on the optical properties of single particles (van de Hulst, 1957; Kerker, 1969; Bohren
and Huffman, 1983) to which we refer without derivation. The total light scattered from
a collimated light beam is obtained by summing the scattering over particles of all sizes
and refractive indices, subject to certain limitations discussed in this chapter. In practice,
light sources and sinks are distributed in space in a complex way; the radiation intensity
at any point is determined by the arrangement of the sources and sinks, the spatial dis-
tribution of the aerosol, and its size distribution and composition. In laboratory studies,
it is possible to control these variables; and for certain relatively simple configurations
(e.g., single scattering and collimated light sources), good agreement can be obtained
between theory and experiment. Applications to industrial process gases and to radiation
transfer through planetary atmospheres are more complicated. They can sometimes be
analyzed using the equation of radiative transfer; an application to atmospheric visibility is
discussed.

Central to many applications is the integration of an optical parameter, such as the total
or angular scattering, over the particle size distribution. The optical thickness (turbidity) of
an aerosol is an important case. Several examples are discussed for different forms of the
size distribution functions. In the inverse problem not discussed in this text, the particle size
distribution can sometimes be estimated from scattering measurements (Bayvel and Jones,
1981). Most of the phenomena discussed in this chapter involve elastic light scattering
in which the frequency of the scattered light is equal to that of the incident beam. At
the end of the chapter, we discuss examples in which the frequency of the scattered light is
different from that of the incident beam, including quasi-elastic light scattering and inelastic
scattering (the Raman effect). Quasi-elastic light scattering refers to weak displacements of
the frequency of the scattered beam from the incident wavelength. Applications are to the
measurement of the size of very small particles. Raman scattering is potentially important
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126 Light Scattering

for on-line measurement of aerosol chemical components. A summary diagram based on
simple quantum mechanical concepts illustrates various scattering processes.

SCATTERING BY SINGLE PARTICLES: GENERAL CONSIDERATIONS

When aerosol particles interact with light, two different types of processes can occur. The
energy received can be reradiated by the particle in the same wavelength. The reradiation
may take place in all directions but usually with different intensities in different directions.
This process is called scattering. Alternatively, the radiant energy can be transformed into
other forms of energy, such as (a) heat and (b) energy of chemical reaction. This process
is called absorption. In the visible range, light attenuation by absorption predominates for
black smokes, whereas scattering controls for water droplets. The next few sections focus
on elastic scattering and absorption.

It is convenient to analyze the light attenuation process by considering a single particle
of arbitrary size and shape, irradiated by a plane electromagnetic wave (Fig. 5.1). The effect
of the disturbance produced by the particle is to diminish the amplitude of the plane wave.
At a distance large compared with the particle diameter and the wavelength, the scattered
energy appears as a spherical wave, centered on the particle and possessing a phase different
from the incident beam. The total energy lost by the plane wave, the extinction energy, i
equal to the scattered energy in the spherical wave plus the energy of absorption.

In many applications, the most important characteristic of the scattered wave is its
intensity, I, expressed in cgs units as erg/cm? sec. At large distances from the origin, the
energy flowing through a spherical surface element is Ir2sin8 d& d¢. This energy flows
radially and depends on 6 and ¢ but notonr. It is proportional to the intensity of the incident
beam [ and can be expressed as follows:

’ 35
Ir“sin 8 d0 d¢ = I (Zr_) F(8, ¢, A)sin 0 dO do 5.1
or
W IF@, ¢, 1) <2
mr/i)?

The wavelength of the incident beam, 4, is introduced in the denominator to make the
scattering function, F(8, ¢, A). dimensionless. In general, F(8, ¢, A) depends on the
| wavelength of the incident beam and on the size, shape, and optical properties of the
| particles but not on r. For spherical particles, there is no ¢ dependence. The relative values
of F can be plotted in a polar diagram as a function of & for a plane in the direction of the
incident beam. A plot of this type is called the scattering diagram for the particle.

The scattering function can be determined from theory for certain important special
cases as discussed in the following sections. The performance of optical single-particle
counters (Chapter 6) depends on the variation of the scattering function with angular
position, and much effort has been devoted to the design of such detectors.

The intensity function, by itself, is not sufficient to characterize the scattered light
Needed also are the polarization and phase of the scattered light, which are discussed in the
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Fig. 5.1 The direction of scattering at any r is characterized by the scattering angle, 6, measured
relative to the direction of the incident beam, and the azimuth angle, ¢.

standard references on the subject. For many applications including atmospheric scattering
and optical instrument design, the parameters of most interest are the intensity function and
related quantities, defined as follows: Let the total energy scattered in all directions by the
particle be equal to the energy of the incident beam falling on the area Cca:

1 2n T
Cica = — [ Ir’sin 0 d6 d¢
IyJo Jo

1 2 m i .
= W[ﬂ fo F(8, ¢, L)sin 8 d6 d¢ (5.3)

This defines the scattering cross section Cyq, Which has the dimension of area but is not
in general equal to the particle cross-sectional area. Indeed it is customary to define the
scattering efficiency

Qsca = Ccsa:"Sg (5.4)
where s, is the geometric cross section. Combining (5.3) and (5.4), we obtain

JZ [T F@©, ¢, 1) dode

(5.5)

Qsca =

2m /)25,




Light Scattering

SCATTERING BY PARTICLES SMALL
COMPARED TO THE WAVELENGTH

The scatierimg efficiency represents the rato of the energy scatiered by the particle to e
fotal energy n the mcident beam intercepied by the geomettic cross section of the partich
As discussed below, O, may be greater than unity.
Similarly, the absorption efficiency is defined as the fraction of the incident b
absorbed per unit cross-sectional area of particle. The total energy removed from
incident beam, the extinction energy, is the sum of the energy scattered and absorhs
The corresponding extinction efficiency is given by

Oext = Osea + Oabs (3

In the next three sections, the dependence of the scattering efficiency on particle sz
discussed; in the first two sections, very small and very large particles are considered. B
of these ranges can be treated from a relatively simple point of view. However, many ligh
scattering problems fall into the more complex intermediate size range discussed i
For a detailed, readable monograph on light scattering by single particles, stressing i
determination of F(@, ¢, A), the reader is referred to van de Hulst (1957).

Light, an electromagnetic wave, is characterized by electric and magnetic field vecli
For simplicity, we consider the case of a plane wave, linearly polarized, incident o8
small spherical particle. The wavelength of light in the visible range is about 0,5 jm. &
particles much smaller than the wavelength, the local electric field produced by the wa
is approximately uniform at any instant. This applied electric field induces a dipole in#
particle. Because the electric field oscillates, the induced dipole oscillates; and accond
to classical theory, the dipole radiates in all directions. This type of scattering is cil
Rayleigh scattering.

The dipole moment, p, induced in the particle is proportional to the instantane
electric field vector:

p =caE 3

This expression defines the polarizability, o, which has the dimensions of a volume i
which is a scalar for an isotropic spherical particle. From the energy of the electric fié

produced by the oscillating dipole, an expression can be derived for the intensity of
scattered radiation:

(1 + cos? 8)k*a? }
=— I (5
2r?

where the wave number £ = 27 /A. The scattering is symmetrical with respect (04

direction of the incident beam with equal maxima in the forward and backward directié
and the minimum at right angles (Fig. 5.4 for x < 0.6).

Because the intensity of the scattered light varies inversely with the fourth pos

of the wavelength, blue light (short wavelength) is scattered preferentially to red.

strong dependence leads to the blue of the sky (in the absence of aerosol particles)
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Scattering by Particles Small Compared to the Wavelength 129

contributes to the red of the sunset when the red-enriched transmitted light is observed.
In polluted atmospheres, however, molecular scattering is usually small compared with
aerosol scattering. The principal contribution to scattering comes from a larger particle size
range in which the Rayleigh theory does not apply. This is discussed in a later section.
For an isotropic spherical particle, it can be shown that
2
. 3 (m _1)_1,. (59)
4m (m2 +2)

where m is the refractive index of the particle and v is the volume, n"d;,’ﬁ. This result is
valid regardless of the shape of the scatterer so long as the particle is much smaller than
the wavelength of the light. When scattering without absorption takes place, the efficiency
factor is obtained by substituting (5.9) and (5.8) in (5.5) and integrating:

Qucn = zx° aatily 5.10)
RS m?+2 (

where x = md, /A is the dimensionless optical particle size parameter.
Both scattering and absorption can be taken into account by writing the refractive index
as the sum of a real and an imaginary component:

m=n—in' (5.11)

where n2+n'? = € and nn’ = Ao /c, where ¢ is the dielectric constant, o is the conductivity,
X is the wavelength in vacuum, and c is the velocity of light, The imaginary term gives rise
to absorption; it vanishes for nonconducting particles (6 = 0). Both € and o depend on
A, approaching their static values at low frequencies. For metals in the optical frequency
range, both n and n’ are of order unity. The scattering efficiency of small spherical absorbing
particles is given by (van de Hulst, 1957)

3 2
8 4 m-—1
i’ = =X Rey— (5.12)
e 3 i m? 42 ]
where Re indicates that the real part of the expression is taken. The absorption efficiency is
m?—1
Qabs = —4xIm { ——— (5.13)
m*+2

where Im indicates that the imaginary part is taken. For very small particles of absorbing
material, the particle extinction coefficient varies only with the first power of x and the total
extinction per particle obtained by multiplying Q' by the cross section is proportional to
the particle volume.

For scattering alone, an expansion of the efficiency factor in x based on Mie theory
discussed below gives

8 ,(m2—1 2 6(m2—])q
Gig—ait | = | [ 1ot ————i% e (5.14)

3 m2 42 5(m3+2)

When m = 1.5 corresponding to certain organic liquids and many metallic salts, the second
term in the second bracket is less than 0.1 for x < 0.53. Thus the Rayleigh form can be
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used with an error of less than 10% for green light (A = 0.5 um) when d,, < 0.084 um
=l

SCATTERING BY LARGE PARTICLES: THE EXTINCTION PARADOX

For particles much larger than the wavelength of the incident light (x >> 1), the sea i
efficiency approaches 2. That is, a large particle removes from the beam twice the amg
of light intercepted by its geometric cross-sectional area. What is the explanation fof
paradox?
For light interacting with a large particle, the incident beam can be consideréls
consist of a set of separate light rays. Of those rays passing within an area defined by
geometric cross section of the sphere, some will be reflected at the particle surface and ol
refracted. The refracted rays may emerge, possibly after several internal reflections. "_'
of the incident beam that does not emerge is lost by absorption within the particle. Hes
all of the energy incident on the particle surface is removed from the beam by scattering
absorption, accounting for an efficiency factor of unity.
There is, however, another source of scattering from the incident beam. The poril

of the beam not intercepted by the sphere forms a plane wave front from which a g
corresponding to the cross-sectional area of the sphere is missing. This is equlva!enllo
effect produced by a circular obstacle placed normal to the beam. The result, accon§
to classical optical principles, is a diffraction pattern within the shadow area 4 I
distances from the obstacle. The appearance of light within the shadow area is the reds
why diffraction is sometimes likened to the bending of light rays around an obstacle.
The intensity distribution within the diffraction pattern depends on the shape of §
perimeter and size of the particle relative to the wavelength of the light. It is independs
of the composition, refractive index, or reflective nature of the surface. The total amous
energy that appears in the diffraction pattern is equal to the energy in the beam intercep
by the geometric cross section of the particle. Hence the total efficiency factor based ol
cross-sectional area is equal to 2.
The use of the factor 2 for the efficiency requires that all scattered light be co .;
including that at small angles to the direction of the beam. In general, the observation mi
be made at a large distance from the particle compared with the particle size. As vai§
Hulst points out, a flower pot in a window blocks only the sunlight falling on it, and#
twice that amount, from entering a room; a meteorite of the same size in space betwees
star and a telescope on Earth will remove twice the amount of starlight falling on it. Becis
the distance of the detector from a scattering aerosol particle is large compared with#
particle diameter, Oy, — 2.0 forx > 1.

SCATTERING IN THE INTERMEDIATE SIZE RANGE: MIE THEORY

General Considerations

Rayleigh scattering for x < 1 and the large particle extinction law for x >> 1 provide usé
limiting relationships for the efficiency factor. Frequently the range x ~ 1 is impona
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Atmospheric visibility, for example, is limited by particles whose size is of the same order
as the wavelength of light in the optical range, from 0.1 to 1 um in diameter (McCartney,
1976). In this range, the theory of Rayleigh is no longer applicable because the field is not
uniform over the entire particle volume. Such particles are still too small for large particle
scattering theory to be applicable. As a result, it is necessary to make use of a much more
complicated theory due to Mie, which treats the general problem of scattering and absorption
of a plane wave by a homogeneous sphere. Expressions for the scattering and extinction
are obtained by solving Maxwell’s equations for the regions inside and outside the sphere
with suitable boundary conditions. It is found that the efficiency factors are functions of x
and m alone. This represents a general scaling relationship for light scattering by isotropic
spheres. Scattering efficiency calculations must be carried out numerically, and the results
for many cases have been tabulated. The theory, sources of detailed calculations and their
interpretation are discussed by van de Hulst (1957) and Kerker (1969). Useful computer
programs are given by Barber and Hill (1990).

For water, m = 1.33, whereas for organic liquids it is often approximately 1.5. The
scattering efficiency for these two values of m are shown in Fig. 5.2 as a function of
the dimensionless particle diameter x. For x — 0, the theory of Rayleigh is applicable.

QSC&

Qsca I '

| | ] |
5 10 15 20 25 30
x=mdy/h

Figure 5.2 Extinction curves calculated from the theory of Mie form = 1.5 and m = 1.33 (van de
Hulst, 1957). The curves show a sequence of maxima and minima of diminishing amplitude, typical
of nonabsorbing spheres with 1 < m < 2. Indeed, by taking the abscissa of the curve form = 1.5 to
be 2x(m — 1), all extinction curves for the range 1 < m < 2 are reduced to approximately the same
curve.
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0 1 2 3
x=mdpfA

Figure 5.3 Extinction efficiency for carbon particles with m = 2.00(1 — 0.33i), temperature not
specified (McDonald, 1962). For small values of x, the extinction is due primarily to absorption; but
for large x, scattering and absorption are of almost equal importance.

Typically, the curves show a sequence of maxima and minima: The maxima correspond
to the reinforcement of transmitted and diffracted light, while the minima correspond 0
interference.

For absorbing spheres, the curve for Qex is usually of simpler form, rising rapidly t0
reach a maximum at small values of x and then falling slowly to approachtwoat large values
of x. Figure 5.3 shows the extinction efficiency for carbon spheres. For such particles, nearly

TABLE 5.1
Qex: for Carbon Spheres at Two Different Wavelengths
(McDonald, 1962)

-

x =ndpfh A = 0.436pm A = 0.623pm
0.2 0.20 0.18
0.4 0.46 042
0.6 0.86 0.82
0.8 1.45 1.44
1.0 2.09 2.17
1.5 2.82 2.94
2.0 3.00 3.09
4.0 2.68 2.68

8.0 246 2.46
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all of the scattering is due to diffraction, while almost all of the geometrically incident light
is absorbed. The refractive index for absorbing spheres usually varies with wavelength, and
this results in the variation of Q¢ as well. As shown in Table 5.1, however, the variation
over the visible spectrum is not great.

Angular Scattering

Mie scattering by single particles irradiated by conventional laser sources is sufficiently
strong to be detected at high signal-to-noise ratios for particles larger than about 0.1 pm.
The noise results from Rayleigh scattering by the gas molecules and from the instrument
electronics. The signal depends in a complex way on the angle of the detector with respect
to the scattering particle, as well as on the particle size and refractive index.

The angular dependence of the light scattering can be calculated from Mie theory. For
values of x approaching unity and small values of m(< 2.0), an asymmetry favoring forward
scattering appears. For very large values of m corresponding to opaque or reflecting particles,
there is an asymmetry toward back scattering. For x >> 1, forward scattering increases still
more strongly (Fig. 5.4), showing very rapid changes for small increases in the scattering
angle 6. The scattered light in the x > 1 limit can be considered to consist of three com-
ponents interpreted according to classical theory as diffraction, reflection, and refraction.

Some of these features are illustrated in Fig. 5.4, which shows the angular distribution
of light scattered by water droplets of different diameters when illuminated by unpolarized
light of A = 0.55 wm. Very small droplets (x < 0.6 ord, < 0.106 12m) follow the Rayleigh
scattering pattern (5.8) with fore and aft symmetry and a weak minimum at 90°. For x > 0.6,
the minimum moves toward the rear. For x > 3, additional minima and maxima appear
and a strong asymmetry develops with the forward scattering several orders of magnitude
stronger than the back scattering. For larger values of x, the forward lobe for & < 30° results
mainly from Fraunhofer diffraction and is nearly independent of the partial refractive index.
Thus forward scattering is sometimes favored in the design of optical particle counters to
eliminate the effect of refractive index on the measurement of particle size.

The variation of the angular scattering with particle size is important in the design of
optical particle counters. To obtain a sufficiently large signal, it is necessary to collect the
light scattered over a finite range of 6. The results of such calculations are shown in Fig.
5.5 for a commercial laser light counter with a collection angle from 35° to 120° from
the forward for both transparent and absorbing particles. The curves show two branches:
The lower one corresponds to the approach to Rayleigh scattering I ~ d;'] for very small
particles, and the upper one corresponds to the transition to geometric optics / ~ a‘; for
large particles. The transition between the branches shows the strong variations in scattering
associated with the Mie range. As aresult, a given response signal may correspond to several
different particle sizes over certain ranges of operation. Large variations with d, present in
the scattered signal from laser light sources are smoothed when polychromatic incandescent
sources with multiple wavelengths are used as shown in Chapter 6.

Scattering cross sections have been measured for liquid suspensions of transparent,
irregular particles graded in size by sedimentation (Hodkinson, 1966). The shapes of the
curves of the scattering cross sections were simpler than those of spherical particles, but
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Figure 5.4 Angular scattering for water droplets illuminated by unpolarized light. The results hold
for light in the visible range; the indicated values of d,, correspond to A = 0.55 pm (after McCartney,
1976). Very small droplets (x < 0.6) show the Rayleigh scattering pattern (5.8) with fore and aft
symmetry and a weak minimum at right angles. Larger particles display strong variations with 8
associated with scattering in the Mie range.

theoretical predictions have not been made except for very small particles to which the
Rayleigh theory is applicable.

SCATTERING BY AEROSOL CLOUDS

General Considerations

We consider the case of an aerosol illuminated by a collimated light source of a given wave-
length. The experimental arrangement is shown schematically in Fig. 5.6. A photometer of
this type installed in a smoke stack or duct would be suitable for measuring the attenuation
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Figure 5.5 Variation of light scattering over the angle from 35 to 120° from the forward direction
for a He—Ne laser light source (A = 0.633 pm). Particles were latex (m = 1.588) and nigrosin dye
(m = 1.67 —0.26i). The lower branch shows the approach to the Rayleigh scattering range (response
= flf:). and the upper branch shows the approach to geometric optics (response ~ df,) (Garvey and
Pinnick, 1983).

Collimator
Lens

Condenser
Lens

|

Telescope
Lens

—

Light
Source

Aerosol

Aperture

. Vg

Aperture  Detector

Figure 5.6 Schematic diagram of an apparatus for the measurement of the extinction produced by
a cloud of small particles. The goal is to measure only transmitted light and not light scattered by
the particles. In practice, light of decreased intensity from the source is measured together with a
certain amount of light scattered at small angles from the forward direction by the particles. (After
Hodkinson, 1966.)
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produced by the flowing aerosol. Long path instruments of this kind have also been used
for measurements of extinction by the atmospheric aerosol.

At concentrations of interest in many applications, the particles are separated by
distances large compared with their diameter and are distributed in space in a random
fashion. Light scattered in a given direction from an incident beam by different particles
will be composed of waves of different phases. The total energy of the scattered wave per
unit area—that is, the intensity of the scattered wave in a given direction—will be equal to
the sum of the intensities of the individual particles in that direction. This type of behavior
is referred to as independent scattering, and it simplifies calculation of the total scattering
by particulate systems.

The criterion for independent scattering can be clarified by referring to the last section.
The scattering function for a single homogeneous sphere interacting with a plane elec-
tromagnetic wave is obtained by solving Maxwell’s equations for the gas and sphere and
matching the boundary conditions. As the particles approach each other, the solution for the
single particle must be modified. Maxwell’s equations must be solved inside and outside
both particles while satisfying the boundary conditions at the particle surfaces. This is a
much more complicated calculation. Interactions become important when the particles are
closer than three to five diameters apart. This corresponds to volumetric concentrations
of the order of 10~2 (volume of solids per unit volume of gas), much higher than usually
present even in industrial aerosol reactors.

The use of single-particle scattering theory also requires that the scattered radiation
proceed directly to the detector without interaction with other particles. That is, multiple
scattering must be negligible. This requirement is more stringent than that of independent
scattering; it depends on both the concentration and the path length as discussed in the next
section.

Extinction Coefficient and Optical Thickness

If there are dN particles in the size range d, to d, + d(d,) per unit volume of air, this
corresponds to a total particle cross-sectional area of (mig /4)dNdz over the light path
length, dz, per unit area normal to the beam. The attenuation of light over this length is
given by the relation

o wd>
—dI =1 f TQM(X' m)nd(dp)a‘{dp) dz (5.15)
0
where dN = nq(dp)d(dy). Hence the quantity

di s
b= = [ T e, mnatdpatay 516

represents the fraction of the incident light scattered and absorbed by the particle cloud
per unit length of path. It is called the extinction coefficient (sometimes the attenuarion
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coefficient or turbidity), and it plays a central role in the optical behavior of aerosol clouds.
In terms of the separate contributions for scattering and absorption (5.6),

b = byca + baps (5.17)

where each term is understood to be a function of wavelength.

The contributions to b(A) from a given particle size range depend on the extinction cross
section and on the particle size distribution function. The integral (5.16) can be rearranged
as follows:

b fm a8 dlogd (5.18)
= —d log d, 5.
—oc d log d, é

where

db 3Qen dV
d log d, T2 d, d log d,

(4.18a)

This function has been evaluated for a measured atmospheric size distribution and is shown
in Fig. 5.7 as a function of particle size. The area under the curve is proportional to b. The
figure shows that the principal contributions to b come from the size range between 0.1 and
3 pm. This occurs frequently for urban aerosols.

The reduction in the intensity of the light beam passing through the aerosol is obtained
by integrating (5.16) between any two points, z = L} and z = Lj:

L=hLe™ (5.19)

db e
dlog d,

L 1 | I 1 | |
0.1

dp (pm)

Figure 5.7 Contributions to the scattering coefficient as a function of particle size for the Pasadena,
CA, aerosol (August 1969) based on the calculations of Ensor et al. (1972). The curve was calculated
from the measured particle size distribution assuming m = 1.5. Largest contributions to light
scattering came from the 0.2- to 0.5-um size range for calculations made over the wavelength range
0.365 um < A < 0.675 pum.
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where the optical thickness, T = f;_‘f b dz, is a dimensionless quantity; b has been kept
under the integral sign to show that it can vary with position, as a result of spatial variation
in the aerosol concentration. Equation (5.19) is a form of Lambert’s law. Limitations on
the use of (5.19) resulting from multiple scattering are usually stated in terms of T (van
de Hulst, 1957). For T < 0.1 the assumption of single scattering is acceptable, while for
0.1 < T < 0.3 it may be necessary to correct for double scattering. For 7 > 0.3, multiple
scattering must be taken into account. The problem of multiple scattering for Rayleigh gases
was solved by Chandrasekhar (1960). For particles in the Mie range, approximate methods
for the calculation of multiparticle scattering are available (Bayvel and Jones, 1981). Fora
polluted urban region where aerosol scattering dominates, the value of b, is of the order
of 10~3 m~!. Taking < 0.1 as the criterion for single scattering, the maximum distance
for the passage of a beam in which single scattering dominates is 0.1 (10)* or 100 m.

SCATTERING OVER THE VISIBLE WAVELENGTH RANGE:
AEROSOL CONTRIBUTIONS BY VOLUME

In many cases of practical interest, the incident light—solar radiation for example—is
distributed with respect to wavelength. The contribution to the integrated intensity I from
the wavelength range A to A +dA is

dl = I, dx (5.20)

where I, is the intensity distribution function. The loss in intensity over the visible range,
taking into account only single scattering, is determined by integrating (5.20) over the

wavelength:
A2 A2
d (f I d)u) = — [f b(A) I dl] dz (5.21)
e i

where A; and A, refer to the lower and upper ranges of the visible spectrum and b is now

regarded as a function of A. We wish to determine the intensity loss resulting from the

particulate volume present in each size range of the size distribution function. For constanl

aerosol density, this is equivalent to the mass in each size range. Knowing the contributions

of the various chemical components to the mass in each size range, a quantitative link canbe

made between the extinction and the components of the aerosol, as discussed in Chapter 13,
Substituting (5.18) and (5. 19) in (5.21), the result is

_ [ & %
b= 2 FL) dA = d,)——d log d, 52
f Y F (V) LG{ D Tiog ¢ 18 652
where
3 [
G(dp) = 37 f Oexx, m)f (1) dA (5221 RAYL
P YA

f()) dA is the fraction of the incident radiation in the range A to A +dA, and £ (%) has been
normalized with respect to the total intensity in the range between A; and A,. The quantity
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Figure 5.8 Lightscattering per unit volume of aerosol material as a function of particle size, integrated
over all wavelengths for a refractive index, m = 1.5. The incident radiation is assumed to have the
standard distribution of solar radiation at sea level (Bolz and Tuve 1970). The limits of integration on
wavelength were 0.36 to 0.680 m. The limits of visible light are approximately 0.350 to 0.700 pm.
The curve is independent of the particle size distribution.

G (d,) represents the extinction over all wavelengths between A, and A, per unit volume
of aerosol in the size range between d,, and d, + d(d,). 1t is independent of the particle
size distribution function. For a refractive index, m = 1.5, G(dp) has been evaluated for
the standard distribution of solar radiation at sea level, using Mie scattering functions. The
result is shown in Fig. 5.8 as a function of particle size.

A number of interesting features are exhibited by this curve: The oscillations of the
Mie functions (Fig. 5.3) are no longer present because of the integration over wavelength.
For d, — 0 in the Rayleigh scattering range, G(dp) ~ df,. For large d,, G(d,) vanishes
because Q.ca approaches a constant value (two) at all wavelengths; as a result, G(dp) ~d, :
for d — oo. The most efficient size for light scattering on a mass basis corresponds to
the peak in this function, which, for m = 1.5, occurs in the size range between 0.5 and 0.6
wm. Particles of 0.1-um diameter, on the one hand, and 3 um on the other contribute only
one-tenth the scattering on an equal mass basis. The volume distribution dV /d log dp of
atmospheric aerosols often shows a peak in the 0.1- to 3-um size range. This reinforces
the importance of this range to total light scattering. In the next two sections, examples are
given of calculations of total scattering by two different type of aerosol size distribution
functions.

RAYLEIGH SCATTERING: SELF-SIMILAR SIZE DISTRIBUTIONS |

An important class of self-similar particle size distributions n(v, t) can be represented by
an equation of the form (Chapters 1 and 7):
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n(v, 1) = (N&%/9) ¥ () (52
where
N., = total aerosol number concentration
¢ = volumetric concentration
n = v/u(t)
() = ¢/N = average particle volume

Yr(n) = dimensionless self-similar form of the distribution function

Size distributions of this form are often encountered in coagulating aerosols, sometimes
when other processes such as condensation occur as well. In the Rayleigh range, according
to (5.8), light scattering is proportional to the square of the particle volume; when two
particles of the same size combine to form a Jarger one, the total light scattered doubles,
This is true so long as the two original particles are separated by a distance much greater
than the wavelength of the incident light. In this case, the two particles scatter independently
and out of phase, and the energy of the scattered light is the sum of the energies scattered
separately by the two particles. When the two particles are combined and still much smaller
than the wavelength of the light, the electric field scattered will be the sum of the two
electric fields in phase. As a result, double the amplitude of the single particle or four times
the energy of a single particle will be scattered. Hence the light scattered by a coagulating
small particle aerosol increases with time.

For self-similar particle size distributions, the average particle size can be determined
directly by measuring the extinction. Total scattering in the Rayleigh range is

oo
Dy = Bf n(v)v? dv (5.24)
0
where
2473 |m? — 1|
P | L MR
A m242|

Substituting the self-similar form for the size distribution function, (5.23), we obtain

)
bsca = B¢’i}f ‘lf(n)??z dn (5.24a)
0

The integral in (5.24a) is a constant that depends on the form of the size distribution function.
For the special case of coagulating, coalescing aerosols composed of spherical particles,
the integral is 2.01 (Chapter 7) and

ATE S
bea = 2.01Bgpv (5.25) .M_!_h 2

Hence for a coagulating aerosol with constant ¢, the scattered light intensity is proportional
to the instantaneous mean particle volume, ¥ = ¢/N. Thus by measuring the extinction, the
average particle volume ¥ can be determined for this special case. No arbitrary constants
appear in the analysis.
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Scattered light (log scale)

Time (msec)

Figure 5.9 Increase, with time, of light scattered by coagulating lead particles generated by the
decomposition of tetramethyl lead. The light source was an argon laser (Graham and Homer, 1973).
As coagulation takes place, the total light scattering increases although N, decreases and ¢ stays
constant, This figure applies to free molecule aerosols.

Light scattering by a coagulating aerosol in the Rayleigh size range was measured by
Graham and Homer (1973). The aerosol was generated by passing a shock wave through
argon containing tetramethyl lead (TML). The TML decomposes behind the shock to form a
supersaturated lead vapor that nucleates and produces small lead droplets that subsequently
coagulate. The rate of coagulation was followed by measuring light scattered perpendicular
to the incident argon laser beam (Fig. 5.9). The slope in logarithmic coordinates is very
close to the theoretical value of 6/5 (Chapter 7).

If there are many particles larger than the Rayleigh range, calculations based on (5.25)
underestimate particle size. The measured scattering by the larger particles will generally
be less than the value calculated, assuming that the particles were in the Rayleigh range.

MIE SCATTERING: POWER LAW DISTRIBUTIONS

Aerosol size distributions can sometimes be represented by a power law relationship in the
size subrange 0.1 < d, < 3 wm, where most of the contribution to light scattering occurs:

na(dy) ~d,” (5.26)
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Such distributions are often used to represent atmospheric and clean room aerosols. Equation
(3.26) can be written without loss of generality in terms of the average particle diameter

d, = [6¢/7 Nuo]'/? as follows:
AN, (dp)‘P
ng = = == (5.27)
d d,

gl

where A is a dimensionless factor that, with a_’p, may be a function of time and position. The

volumetric concentration ¢ corresponds to the light-scattering subrange (0.1 < dp, < 3 pm),

essentially the accumulation mode (Chapter 13). Equation (5.27) may result from the

interaction of various physical processes affecting the size distribution, but for the purposes

of this discussion can be regarded as empirical. QUASI-]
Substituting (5.27) in the expression for the scattering part of the extinction coefficient, -

(5.16), we obtain

JL.'!—pANOC 6¢ (p—1)/3 X3
beea = ,m)x*7P dx 5.28)
el 42-p [FNCO [! Oscalx, m) (

where x| and x, correspond to the lower and upper limits, respectively, over which the
power law holds. For the atmospheric aerosol, the lower limit of applicability of the power
law is about 0.1 pm or somewhat less. This corresponds to x; < 1, and for this range Q,
is very small (Rayleigh range) so that x; can be replaced by zero. The contribution to the
integral for large values of x is also small because p is usually greater than 3 or 4 and Qs
approaches a constant, 2. Hence the upper limit x, can be set equal to infinity as a good
approximation. The result is

M PAN, [ 6¢ (P~ DA poo
Tt L e (R a(x,m)x2P d
sca AP [JTNO.;,] £ Qgcalx, m)x ax

= AA VP NEPB G173 (5.29)

where A, is a constant defined by this expression. Thus if the distribution obeys a power law
(5.26) and (5.27), the order, p, can be determined by measuring the wavelength dependence
of the extinction coefficient. Moreover, for the power law distribution, the wavelength
dependence of by, is independent of the shape of the extinction curve, provided that it
satisfies the asymptotic limiting relationships discussed above.

Experimentally, it is sometimes found that

bsczl = Ay (5.30)
where A; is a constant. This corresponds to p = 4 and constant A: by (5.27) we obtain

_ 6A¢

= (5.31)
3 .
erp

iy

a power law form that often holds approximately for the light-scattering subrange of the
atmospheric aerosol. However, (5.31) cannot extend to infinitely large particle diameters
because the aerosol volumetric concentration becomes logarithmically infinite, Equation
(5.30) holds better when the value of ¢ corresponds to the subrange 0.1 < d, < 1pm
rather than the total volumetric concentration. The constants, of course, differ.




Quasi-Elastic Light Scattering 143

It is also found experimentally that the dependence of by, on A for the atmospheric
aerosol can sometimes be represented by an equation of the form

[ (5.32)

corresponding to p = 4.3, which is close to the value observed by direct measurement of
the size distribution function. Equation (5.32) indicates more scattering in the blue (short
wavelength) than in the red (long wavelength), with the result that the range of vision in
hazy atmospheres is greater for red than for blue light.

QUASI-ELASTIC LIGHT SCATTERING

In classical light-scattering theory, monochromatic light is scattered in all directions with
the same frequency as the incident beam . If the particle is in motion with respect to a
fixed observer, the situation changes. The most important example is the Brownian motion
(Chapter 2) in which submicron particles change direction and speed. Although the moving
particle scatters light with the same frequency as the incident beam, a fixed observer or
detector will see a slightly different frequency w = wo + Aw, where the frequency shift Aw
is an optical Doppler shift. If the emitting particle moves toward the detector, the light it emits
appears more blue-shifted; if it moves away it appears more red-shifted. The Doppler shift
depends only on the particle velocity and not on its material or optical properties. Particles
of a given size have a Maxwellian velocity distribution determined by the equipartition
principle and the absolute temperature (Chapter 2).

The Doppler shift is very small compared with the main frequency. To a close approx-
imation, it is given by

v
Aw = —wy (5.33)
c

where v is the particle velocity with respect to the detector and ¢ is the velocity of light.
Because the mean thermal speed of a 0.1-pm particle is of the order of 10 cm/sec, it is clear
that the Doppler shift is very small. For this reason it can be neglected in the classical light-
scattering studies discussed above. However, with suitable instrumentation, it is possible
to detect the shift averaged over the particles and determine the particle size in this way.
The phenomenon is called quasi-elastic light scattering (QELS); the frequency shift is so
small that the scattering is nearly elastic (Berne and Pecora, 1976; Dahneke, 1983). QELS,
also known as photon correlation spectroscopy or dynamic light scattering, can be used to
measure the size of monodisperse particles in the size range from 0.01 to a few tenths of
a micron. The method is widely used for small particles and large molecules suspended in
aqueous solutions. It has also been applied in a few cases to aerosols (Dahneke, 1983).

In a QELS system, a laser beam is passed through a cloud of Brownian particles. Light
is scattered into the detector that is set at an angle 6 with respect to the incident beam.
The scattering volume is defined by the intersection between the incident and the detector
collection solid angles. The instantaneous intensity of the scattered light along a given path
I(t) can be written as the sum of the average intensity, I, and a fluctuating intensity, I'(1)

1O)=1+10 (5.34)
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The time-averaged scattered intensity [ is the basis of conventional light-scattering tech-
niques used for aerosol measurements.

The intensity fluctuations due to the Brownian motion take place on a time scale much
faster than conventional photometers or the human eye can detect. The variation in the
fluctuating scattered light intensity with time resembles a noise signal that can be analyzed
in terms of its correlation function with respect to time. The usual practice is to measure
the polarized intensity time correlation function that is related to the diffusion coefficient
for monodisperse particles as follows

G@E) =TI +E) = A1+ Bla*Noog §)I°] (539
where
A = baseline constant
B = instrument constant
o = molar polarizability of the particles
g(£) = normalized autocorrelation function for the translational Brownian motion
N, = average particle concentration SPECIFI(

For monodisperse particles
g(&) = exp (—q*£D) (5.36)

where D = particle diffusion coefficient and ¢ = (47 /A) sin(6/2). The autocorrelation
function g(£) is the parameter sought, and from it the diffusion coefficient, hence parti-
cle diameter can be obtained. The procedures have been worked out in most detail for
application to hydrosols and high-molecular-weight polymeric solutions (Dahneke, 1983).

Rearranging (5.35) gives the autocorrelation function in terms of the experimentally
measured variable G(&):

1
2Noog(§) = — [G(§) — A]'? 5.3)
a"Neog(§) JAP [G(§) — A] (

Various methods are used to determine the diffusion coefficient. For example after subfrac-
tion of the baseline constant, A, G(£) may be fitted to an exponential function to permit

calculation of the decay constant g2 D, hence particle size from the value of D.
For polydisperse aerosols, the simple expression (5.36) for the autocorrelation function
must be averaged over the particle size distribution function. In the Rayleigh scattering range

Noog(sj T [ ”d(dp)dgexp (—'QZED) d(dp) (5.38)
0

There is no general exact method for extracting size distribution functions n4(dp) from
| (5.38) and the experimentally measured function G(§) when the form of na(dy) is nol
known. In the method of cumulants, the one most commonly used to estimate hydrosol
size distributions from this integral, the logarithm of the autocorrelation function gf) 8
expanded in §:

%-2
In g(E)ZKig—Kz?—!—“. (5.39)
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The coefficients of & are moments of the size distribution function known as cumulants. In
practice, only the first two cumulants can be accurately determined from the experimental
data:

Ky =¢’D (5.402)

K> = ¢"(D - D)2 (5.40b)

Here the averaging is weighted by d;‘ as in (5.38). For a free molecule aerosol we have
D ~ dp‘? (Chapter 2), so D is proportional to the fourth moment of the particle size
distribution. This heavily weights the upper end of the distribution function. If the f orm of
the distribution function is known, the cumulants can be used to evaluate the parameters
of the distribution. For example, if the size distribution is self-preserving (Chapter 7), any
moment can be used to estimate the complete distribution.

SPECIFIC INTENSITY: EQUATION OF RADIATIVE TRANSFER

In the general case of aerosol/light interactions in the atmosphere or within a confined space,
the light is neither unidirectional nor monochromatic; each volume element is penetrated in
all directions by radiation. This requires a more careful definition of the intensity of radiation
than used before. For the analysis of this case, an arbitrarily oriented small area, do , is chosen
with a normal n (Fig. 5.10). At an angle 6 to the normal we draw a line S, the axis of an
elementary cone of solid angle dcw. If through every point of the boundary of the area do
a line is drawn parallel to the nearest generator of the cone dw, the result is a truncated
semi-infinite cone d2, similar to the cone dw. Its cross-sectional area, perpendicular to §
at the point P, will be do cos 6.

Let dE be the total quantity of energy passing in time dt through the area do inside
cone d£2 in the wavelength interval A to A + d. For small do and dw, the energy passing
through do inside d$2 will be proportional to do dew.

The specific intensity of radiation or simply the intensity, I, is defined by the relation

s dw  Figure 5.10 Geometric factors determining
specific intensity of radiation.
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- dE
* 7 do cos 6 drdwdi

The intensity is, in general, a function of the position in space of the point P, the direction
s, time ¢, and wavelength A:

(541

L =5L(P,s,tA) (5.42)

If [; is not a function of direction, the intensity field is said to be isotropic. If I, is nota
function of position the field is said to be homogeneous. The total intensity of radiation
is I = fﬁm I, dA. In the rest of this chapter, we suppress the suffix A to simplify the
notation.

Now consider the radiant energy traversing the length, ds, along the direction in which
the intensity is defined; a change in the intensity results from the combination of the effects
of extinction (absorption and scattering) and emission:

dI(P,s) = dlI(extinction) + I (emission) (543)
The loss by extinction can be written as before in terms of the extinction coefficient, b;
dl (extinction) = —bI ds (5.44)

Emission by excited dissociated atoms and molecules in the air is usually small in the
visible compared with solar radiation. Thermal radiation is important in the far infrared bul
not in the visible. Hence consistent with the assumptions adopted in this chapter, gaseous
emissions can be neglected in the usual air pollution applications.

In an aerosol, however, a virtual emission exists because of rescattering in the s direction
of radiation scattered from the surrounding volumes. The gain by emission is written in the
form of a source term:

dl (emission) = bJ ds (5.45)

This equation defines the source function, J.
Hence the energy balance over the path length, ds, takes the form

—_—— = (5.46)

which is the equation of radiative transfer. This equation is useful, as it stands, in defining
atmospheric visibility as discussed in a later section. Detailed applications require ai
expression for the source function, J, which can be derived in terms of the optical properties
of the particles, but this is beyond the scope of this book. For further discussion, the reades
is referred to Chandrasekhar (1960) and Goody (1964).

EQUATION OF RADIATIVE TRANSFER: FORMAL SOLUTION

The equation of radiative transfer is an energy balance; except for this concept, its physical
content is slight. The physical problems of interest enter through the extinction coefficienl
and the source function. Many papers and monographs have been written on its solution
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for different boundary conditions and spatial variations of the optical path (Chandrasekhar,
1960; Goody, 1964). Some simple solutions are discussed in this and the next section. Most
of the applications have been to planetary atmospheres and astrophysical problems rather
than to configurations of industrial interest or small scale pollution problems.

The formal solution of the equation of transfer is obtained by integration along a given

path from the point s = 0 (Fig. 5.11):

5
[(s) = I(0)e ™ 4 f J(sNe T Db ds' (5.47)
0

where 7(s, s") is the optical thickness of the medium between the points s and 5"
5
(s, 8) = f bds (5.48)
SJ

The source function J(s') over the interval 0 to s must be known to evaluate the integral
in (5.47).

The interpretation of (5.47) is interesting: The intensity at s is equal to the sum of two
terms. The first term on the right-hand side corresponds to Lambert’s law (5.19), often used
for the attenuation of a light beam by a scattering medium. The second term represents the
contributions to the intensity at s from each intervening radiating element between 0 and
s, attenuated according to the optical thickness correction factor. In the absence of external
light sources and if secondary scattering by the surrounding aerosol can be neglected,
the source function J becomes zero. This is the situation for configuration of a properly
designed transmissometer, which is used to measure the attenuation of a light beam through
the smoke flowing through a stack and in other industrial applications.

When the medium extends to —oo in the s direction and there are no sources along
s, it may be convenient not to stop the integration at the point 0 but to continue it
indefinitely:

5

I(s)= f J(s)e ™ b ds’ (5.49)
-0

Thus the intensity observed at s is the result of scattering by all of the particles along the

line of sight.

Figure 5.11 Path of integration along the
s vector. Light at point 0 reaches any point
s attenuated according to Lambert’s law.
In addition, light is scattered toward s by
particles between 0 and s such as those at
the point 5”.
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LIGHT TRANSMISSION THROUGH THE ATMOSPHERE: VISIBILITY

An important and interesting application of the theory of radiative transfer is to the
definition of atmospheric visibility. The terms “visibility” and “visual range” may be used
interchangeably to signify the distance at which it is just possible to distinguish a dark
object against the horizon. As pointed out by Middleton (1952), “the problem, then, is to
establish usable theoretical relationships between light, eye, target, and atmosphere that wil
permit the calculation of the visual range at any time; and to provide means of measuring
the necessary parameters quickly and accurately enough.” This can be accomplished by
solving the equation of radiative transfer, subject to a set of assumptions concerning human
response to the obscuration of objects.

Most of the information that we obtain through our sense of vision depends on our
perception of differences in intensity or of color among the various parts of the field of
view. An object is recognized because its color or brightness differs from its surroundings,
and also because of the variations of brightness or color over its surface. The shapes of
objects are recognized by the observation of such variations.

Differences in intensity are particularly important and are the principal basis for the
classical theory of visibility (Steffens, 1956): An isolated object on the ground such asa
building is viewed from a distance along a horizontal line of sight (Fig. 5.12). The intensity
contrast between the test object and the adjacent horizon sky is defined by the expression

_h-5
— I2

where I, is the intensity of the background and I is the intensity of the test object, both
measured at the same distance from the observer.

Expressions for the intensity can be obtained by integrating the equation of radiative
transfer (5.46) over the horizontal distance from the test object to the point of observation.
If b and J are not functions of s, the integration gives

C (5.50)

!(5) = I(O}e_b-\' 4+ 7 [] _ e—b.\]

Horizon
Sky

Observer Test
Object

£ 3 L%
Ny L s

Figure 5.12 Relative arrangements of observer, object, and horizon sky in definition of the visibility.
The angle between the lines of sight corresponding to I) and I, is very small.
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where s = 0 corresponds to the location of the test object. Rewriting (5.50) as

L(0) [11(s) — I2(5)]

.. _ (5.52
he) Do) L
and substituting (5.51) for [, (s) — I2(s)] gives with (5.50)
_ —bs 3
o L(0) [[;(0) — L(O)]e™ L(0) cO)e" 553

~ L) L(0) G

where C(0) is the contrast at the test object.

In viewing the horizon sky, the observer sees the virtual emission, J, resulting from
the light from the sun and surroundings scattered in the direction of the observer by the
atmosphere. This is sometimes referred to as the air light or the skylight. By assumption,
the air light is not a function of s. Suppose that 2 refers to the line of sight in the direction
of the horizon sky. The intensity at any plane normal to this sightline is equal to the virtual
emission or air light J; that is, I,(s) = I,(0) = J = constant and (5.53) becomes

C'=C{0)e™ (5.54)
If the test object is perfectly black, then I;(0) = 0, C(0) = —1, and
= _e—bs (5.55)

The minus sign in this expression results because the test object is darker than the back-
ground.

The visual range or, more commonly, the visibility is defined as the distance at which
the test object is just distinguishable from background. Hence the minimum contrast that
the eye can distinguish must now be introduced into the analysis. This contrast is denoted
by C* and the corresponding visibility s = s*. For a black object at s = s,

C*

Il

—exp(—bs™) (5.56)
or
1
5 = g In(—C*) (5.57)

The parameter C* is sometimes called the threshold contrast or “psychophysical constant”
because it depends on human perception. Based on data averaged over responses of a group
of individuals, its value is usually taken to be 0.02:

912

b

Hence the visibility is inversely proportional to the extinction coefficient. Because b is a
function of wavelength, the visibility defined in this way also depends on wavelength.
The contribution of the air light to the obscuration of distant objects comes mostly from
the aerosol in the vicinity of the observer. The air light from more distant parts of the line
of sight is itself reduced by the aerosol between its region of origin and the observer. Figure
5.13 shows that if the visual range is 1 mile, half of the obscuration would be produced by
the 0.18 mile of aerosol nearest the observer. The strong weighting of the aerosol near the

1
T =3 In 0.02 = (5.58)
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Figure 5.13 Fraction of the total air light (to infinity) contributed by the portion of the atmosphere
between the observer and the point s from the observer. The air light that obscures distant objects
arises mostly from the aerosol in the immediate vicinity of the observer (for a uniform atmosphere). INELAST!
(See Problem 6.) (After Steffens, 1956.)

observer is one reason why the idealized theoretical analysis discussed above works as well
as it does. As long as the aerosol is fairly uniform in the neighborhood of the observer, the
conditions beyond have little influence.

The total atmospheric extinction is the sum of contributions for the aerosol, molecular
scattering, and, perhaps, some gas absorption at certain wavelengths characteristic of strong
absorbers such as NO,:

b = baerosol + Dmolecular (5.59)

Molecular scattering coefficients for air have been tabulated (Table 5.2). For A = 0.5
pm, the visibility calculated from (5.58) is about 220 km or 130 mi. Hence the visibilities
of a few miles or less, often observed in urban areas when the humidity is low, are due
primarily to aerosol extinction. In some cases, however, there may be a contribution by
NO; absorption.
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TABLE 5.2
Rayleigh Scattering Coefficient for Air at 0°C and
1 atm® (Penndorf, 1957)

bseat X 108
A(pm) (em™)
0.2 954.2
0.25 338.2
0.3 1525
0.35 79.29
0.4 45.40
0.45 27.89
0.5 18.10
0.55 12.26
0.6 8.604
0.65 6.217
0.7 4.605
0.75 3.484
0.8 2.684

aTp correct for the temperature, by = br—pec(273/T K) at
atm. This approximate formula does not take into account the variation
of refractive index with temperature.

INELASTIC SCATTERING: RAMAN EFFECT

Basic Concepts

The previous discussions were limited to scattering processes in which the wavelengths of
the incident and scattered light are equal (or nearly equal), that is, elastic scattering. Light
may be scattered at a wavelength different from the incident beam, inelastic scattering, as
a result of quantum mechanical effects. This phenomenon, known as Raman scattering, is
illustrated in Fig. 5.14, which summarizes absorption and the various scattering processes
discussed in this chapter. Two vibrational quantum states present in a scattering molecule
are shown: the ground state V = 0 and the V = 1 energy state. The energy of the incident
beam is assumed to be several times larger than the energy difference between the two states.
Photons from the incident beam may raise the molecule from state O or 1 to a virtual state
that does not correspond to any allowed state. Three outcomes are possible. The molecule
may return to its original state (0 or 1) by emission of a photon with the same energy as
the incident beam, equivalent to elastic scattering. Alternatively, the molecule originally

S

K in state 0 may drop to state 1 by emitting a photon of less energy than the incident beam
1e (Stokes emission). Finally the molecule originally in state 1 may fall to state O by emitting
Y a photon of higher energy than the incident beam (anti-Stokes emission). Thus the Stokes

lines appear at lower frequencies and the less intense anti-Stokes lines at higher frequencies
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Figure 5.14 Schematic diagram illustrating infrared absorption and elastic and inelastic (Raman) |
scattering by a molecule with two vibrational quantum states, the ground state v = 0 and the v = |

energy level. In infrared absorption, the incident photon has the same frequency as the molecular
vibration. In elastic and inelastic scattering, the incident photon has a much higher frequency, seven

times that of the vibrational quantum state in this diagram. Scattered photons are of two types: the

lower (“Stokes”) or higher (“anti-Stokes™) frequencies (7v & v). The photon frequency difference

before and after scattering is equal to the molecular vibrational frequency. (After Colthup et al.,

1990, p. 61.)

than that of the incident beam. The intensity of the Raman scattering is usually several
orders of magnitude smaller than that of elastic scattering.

Raman spectra have a number of features that simplify their interpretation: (1) The
Raman shift or difference between the frequencies of the incident and scattered light is in-
dependent of the frequency of the incident light; (2) to a first approximation, the Raman shift
is independent of the state (gas, liquid, or solid) of the scattering medium; (3) the energy cor-
responding to the Raman shift frequency, hvg, is equal to the difference between the energies
of two stationary states of the scattering molecules; precise information on this energy dif-
ference can be obtained from the absorption and emission spectra of the scattering material.

Raman Scattering by Particles

There are few methods suitable for on-line chemical analysis of aerosol particles. Raman
spectroscopy offers the possibility of identifying the chemical species in aerosol particles
because the spectrum is specific to the molecular structure of the material, especially
to the vibrational and rotational modes of the molecules. Raman spectra have been ob-
tained for individual micron-sized particles placed on surfaces, levitated optically or by an
electrodynamic balance, or by monodisperse aerosols suspended in a flowing gas. A few
measurements have also been made for chemically mixed and polydisperse aerosols. The
Raman spectrum of a spherical particle differs from that of the bulk material because of
morphology-dependent resonances that result when the Raman scattered photons undergo
Mie scattering in the particle. Methods have been developed for calculating the modified
spectra (McNulty et al., 1980).

Both measurements and calculations based on Raman theory indicate that the scattering I
intensity is approximately proportional to the particle volume (or mass) over certain
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refractive index ranges and values of 7d, /A > 0.2. Calculations (Fig. 5.15) show this holds
best for scattering in the forward direction. Figure 5.16 shows experimental measurements
of the ratio of the Raman intensity of monodisperse and polydisperse diethylsebacate
aerosols to that of the nitrogen carrier gas peak as a function of aerosol mass loading
for aerosols with various size distributions. Mass mean diameters ranged from 0.4 to
1.8 wm, and the mass loadings ranged from 0.4 to 13 g/m>. The figure shows that
the Raman signal is approximately independent of the size distribution over this range
and is proportional to the total mass concentration. Neither the theoretical calculations
nor the experimental measurements show a strong effect of the morphology-dependent
resonances on the relationship of the scattering intensity to particle volume for spherical
particles.

The mass loadings in these studies were high, with the lowest approximately 0.4 g/m’.
These concentrations fall in the range of some industrial and therapeutic aerosols but are
several orders of magnitude higher than atmospheric aerosol concentrations. Buehler et al.
(1991) also found an approximate dependence of scattering on particle volume for large
suspended single droplets (25 < d, < 66 um). These results suggest that at sufficiently
high mass loadings it may be possible to monitor the mass concentration of Raman active
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Figure 5.15 Calculated values of the intensity of Raman scattering at various values of the scattering
angle for m = 1.5. The intensity is approximately proportional to the particle volume for x > 2
(Stowers and Friedlander, 1998).
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Figure 5.16 Ratio of the Raman intensity of monodisperse and polydisperse diethylsebacate aerosols
to that of the nitrogen carrier gas peak. Mass mean diameters ranged from 0.4 to 1.8 um, and mass
loadings ranged from 0.4 to 13 g/m— (Stowers and Friedlander, 1998).

chemical species in polydisperse flowing aerosols composed of particles larger than a few
tenths of a micron in diameter.

PROBLEMS

5.1 For a given mass of particles with the optical properties of carbon spheres, determine the
particle size producing maximum extinction for A = 0.436 um. Assume monodisperse particles.

5.2 Determine the particle concentration (1.g/m*) necessary to scatter an amount of light equal
to that of air at 20°C and 1 atm. Assume a particle refractive index of 1.5 and a wavelength
of 0.5 pum. Do the calculation for 0.1-, 0.5-, and 1-pm particles of unit density. Compare your
result with the average concentration in the Los Angeles atmosphere, about 100 pg/m?.

5.3 The California visibility standard requires that the visibility be greater than 10 miles on
days when the relative humidity is less than 70%. Consider a day when the visibility controlling
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aerosol is composed of material with a refractive index of 1.5. Estimate the aerosol concentration
in the atmosphere that would correspond to the visibility standard, Assume (1) the density of the
spherical particles is 1 g/cm?; (2) the aerosol is monodisperse with a particle size, dp, = 0.5 pm;
and (3) the wavelength of interest is 0.5 m. Express your answer in micrograms of aerosol per
cubic meter of air.

5.4 The extinction of light by an aerosol composed of spherical particles depends on its optical
properties and size distribution. Consider the distribution function ny(dp) ~ d;'*‘, often observed
at least approximately. Suppose these particles are composed of an organic liquid (m = 1.5),
on the one hand, or of carbon, on the other. This might correspond to a photochemical aerosol
(m = 1.5) and a soot aerosol generated by a diesel source or other combustion processes.
Calculate the ratio beson/b1.s for fixed size distribution.

5.5 It is possible, in principle, to determine the size distribution of particles of known optical
properties by measurement of the light scattered by a settling aerosol. In this method, the inten sity
of the light transmitted by the aerosol in a small cell, I, is recorded as a function of time. The
aerosol is initially uniform spatially, and there is no convection.

The light scattered from a horizontal beam at a given level in the cell remains constant until
the largest particles in the aerosol have had time to fall from the top of the cell through the beam.
The scattering will then decrease as successively smaller particles are removed from the path of
the beam.

Show that the size distribution function can be found from the relationship (Gumprecht and
Sliepcevich, 1953)

T
ITdi 4
where d,, is the maximum particle size in the beam at any time, f, and L is the length of the light
path (cell thickness). Describe how d;',' and d{d;)jdr can be determined.

In practice, the system will tend to be disturbed by Brownian diffusion and convection, and

this method is seldom used to determine na(d;).

o 4(45)
g4 (dp) —ﬁ

5.6 Let J be the intensity of the air light seen by an observer looking along a horizontal path
to the horizon sky (infinity). The path falls close to one that ends at a black test object a distance
s from the observer. (a) Show that the intensity of the light seen by an observer looking toward
the black test object is given by

I(s)=J(1—e™)

where s is the distance of the observer from the test object. (b) Derive an expression for the
fraction of the total air light (to infinity) contributed by the atmosphere between the observer
and the point s from the observer. This is the expression on which Fig. 5.13 is based (Steffens,
1956).
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