CHEMICAL ENGINEERING

For additional information concerning heat transfer and fluid mechanics, refer to the HEAT TRANSFER, THERMODYNAMICS, MECHANICAL ENGINEERING or FLUID MECHANICS sections.

For additional information concerning chemical process control, refer to the COMPUTERS, MEASUREMENT, AND CONTROLS section.
For additonal information concerning statistical data analysis, refer to the following.

Confidence Intervals
See the subsection in the ENGINEERING PROBABILITY
AND STATISTICS section of this handbook.
Statistical Quality Control
See the subsection in the INDUSTRIAL ENGINEERING section of this handbook.

Linear Regression
See the subsection in the ENGINEERING PROBABILITY
AND STATISTICS section of this handbook.
One-Way Analysis of Variance (ANOVA)
See the subsection in the INDUSTRIAL ENGINEERING section of this handbook.

SELECTED RULES OF NOMENCLATURE IN ORGANIC CHEMISTRY

Alcohols

Three systems of nomenclature are in general use. In the first the alkyl group attached to the hydroxyl group is named and the separate word alcohol is added. In the second system the higher alcohols are considered as derivatives of the first member of the series, which is called carbinol. The third method is the modified Geneva system in which (1) the longest carbon chain containing the hydroxyl group determines the surname, (2) the ending e of the corresponding saturated hydrocarbon is replaced by ol, (3) the carbon chain is numbered from the end that gives the hydroxyl group the smaller number, and (4) the side chains are named and their positions indicated by the proper number. Alcohols in general are divided into three classes. In primary alcohols the hydroxyl group is united to a primary carbon atom, that is, a carbon atom united directly to only one other carbon atom. Secondary alcohols have the hydroxyl group united to a secondary carbon atom, that is, one united to two other carbon atoms. Tertiary alcohols have the hydroxyl group united to a tertiary carbon atom, that is, one united to three other carbon atoms.

Ethers

Ethers are generally designated by naming the alkyl groups and adding the word ether. The group RO is known as an alkoxyl group. Ethers may also be named as alkoxy derivatives of hydrocarbons.

Carboxylic Acids

The name of each linear carboxylic acid is unique to the number of carbon atoms it contains. 1: (one carbon atom) Formic. 2: Acetic. 3: Propionic. 4: Butyric. 5: Valeric. 6: Caproic. 7: Enanthic. 8: Caprylic. 9: Pelargonic. 10: Capric.

Aldehydes

The common names of aldehydes are derived from the acids which would be formed on oxidation, that is, the acids having the same number of carbon atoms. In general the ic acid is dropped and aldehyde added.

Ketones

The common names of ketones are derived from the acid which on pryrolysis would yield the ketone. A second method, especially useful for naming mixed ketones, simply names the alkyl groups and adds the word ketone.
The name is written as three separate words.

Common Names and Molecular Formulas of Some Industrial (Inorganic and Organic) Chemicals

Common Name	Chemical Name	Molecular Formula
Muriatic acid	Hydrochloric acid	HCl
Cumene	Isopropyl benzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
Styrene	Vinyl benzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$
-	Hypochlorite ion	OCl^{-1}
-	Chlorite ion	$\mathrm{ClO}_{2}{ }^{-1}$
-	Chlorate ion	$\mathrm{ClO}_{3}{ }^{-1}$
-	Perchlorate ion	$\mathrm{ClO}_{4}{ }^{-1}$
Gypsum	Calcium sulfate	CaSO_{4}
Limestone	Calcium carbonate	CaCO_{3}
Dolomite	Magnesium carbonate	MgCO_{3}
Bauxite	Aluminum oxide	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Anatase	Titanium dioxide	TiO_{2}
Rutile	Titanium dioxide	TiO_{2}
-	Vinyl chloride	$\mathrm{CH}_{2}=\mathrm{CHCl}$
-	Ethylene oxide	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
Pyrite	Ferrous sulfide	FeS
Epsom salt	Magnesium sulfate	MgSO_{4}
Hydroquinone	p-Dihydroxy benzene	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}$
Soda ash	Sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
Salt	Sodium chloride	NaCl
Potash	Potassium carbonate	$\mathrm{K}_{2} \mathrm{CO}_{3}$
Baking soda	Sodium bicarbonate	NaHCO_{3}
Lye	Sodium hydroxide	NaOH
Caustic soda	Sodium hydroxide	NaOH
-	Vinyl alcohol	$\mathrm{CH}_{2}=\mathrm{CHOH}$
Carbolic acid	Phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
Aniline	Aminobenzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
-	Urea	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
Toluene	Methyl benzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
Xylene	Dimethyl benzene	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$
-	Silane	SiH_{4}
-	Ozone	O_{3}
Neopentane	2,2-Dimethylpropane	$\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3}$
Magnetite	Ferrous/ferric oxide	$\mathrm{Fe}_{3} \mathrm{O}_{4}$
Quicksilver	Mercury	Hg
Heavy water	Deuterium oxide	$\left(\mathrm{H}^{2}\right)_{2} \mathrm{O}$
-	Borane	BH_{3}
Eyewash	Boric acid (solution)	$\mathrm{H}_{3} \mathrm{BO}_{3}$
-	Deuterium	H^{2}
-	Tritium	H^{3}
Laughing gas	Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$
-	Phosgene	COCl_{2}
Wolfram	Tungsten	W
-	Permanganate ion	$\mathrm{MnO}_{4}{ }^{-1}$
-	Dichromate ion	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$
-	Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+1}$
Brine	Sodium chloride (solution)	NaCl
Battery acid	Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$

CHEMICAL THERMODYNAMICS

Vapor-Liquid Equilibrium

For a multi-component mixture at equilibrium

$$
\hat{f}_{i}^{V}=\hat{f}_{i}^{L}, \text { where }
$$

$\hat{f}_{i}^{V}=$ fugacity of component i in the vapor phase, and
$\hat{f}_{i}^{L}=$ fugacity of component i in the liquid phase.
Fugacities of component i in a mixture are commonly calculated in the following ways:

For a liquid $\quad \hat{f}_{i}^{L}=x_{i} \gamma_{i} f_{i}^{L}$, where
$x_{i}=$ mole fraction of component i,
$\gamma_{i}=$ activity coefficient of component i, and
$f_{i}^{\mathrm{L}}=$ fugacity of pure liquid component i.
For a vapor $\hat{f}_{i}^{V}=y_{i} \hat{\Phi}_{i} P$, where
$\mathrm{y}_{i}=$ mole fraction of component i in the vapor,
$\hat{\Phi}_{i}=$ fugacity coefficient of component i in the vapor, and
$P=$ system pressure.
The activity coefficient γ_{i} is a correction for liquid phase non-ideality. Many models have been proposed for γ_{i} such as the Van Laar model:

$$
\begin{aligned}
& \ln \gamma_{1}=A_{12}\left(1+\frac{A_{12} x_{1}}{A_{21} x_{2}}\right)^{-2} \\
& \ln \gamma_{2}=A_{21}\left(1+\frac{A_{21} x_{2}}{A_{12} x_{1}}\right)^{-2}, \text { where }
\end{aligned}
$$

$\gamma_{1}=$ activity coefficient of component 1 in a twocomponent system,
$\gamma_{2}=$ activity coefficient of component 2 in a twocomponent system, and
$A_{12}, A_{21}=$ constants, typically fitted from experimental data.
The pure component fugacity is calculated as:

$$
f_{i}^{\mathrm{L}}=\Phi_{i}^{\text {sat }} P_{i}^{\text {sat }} \exp \left\{v_{i}^{L}\left(P-P_{i}^{\text {sat }}\right) /(R T)\right\} \text {, where }
$$

$\Phi_{i}^{\text {sat }}=$ fugacity coefficient of pure saturated i,
$P_{i}^{\text {sat }}=$ saturation pressure of pure i,
$v_{i}^{L}=$ specific volume of pure liquid i, and
$R=$ Ideal Gas Law Constant.

Often at system pressures close to atmospheric:

$$
f_{i}^{\mathrm{L}} \cong P_{i}^{\text {sat }}
$$

The fugacity coefficient $\hat{\Phi}_{i}$ for component i in the vapor is calculated from an equation of state (e.g., Virial). Sometimes it is approximated by a pure component value from a correlation. Often at pressures close to atmospheric, $\hat{\Phi}_{i}=1$. The fugacity coefficient is a correction for vapor phase non-ideality.
For sparingly soluble gases the liquid phase is sometimes represented as

$$
\hat{f}_{i}^{L}=x_{i} k_{i}
$$

where k_{i} is a constant set by experiment (Henry's constant). Sometimes other concentration units are used besides mole fraction with a corresponding change in k_{i}.

Reactive Systems

Conversion: moles reacted/moles fed
Extent: For each species in a reaction, the mole balance may be written:
moles $_{\mathrm{i}, \text { out }}=$ moles $_{\mathrm{i}, \mathrm{in}}+v_{i} \xi$ where
ξ is the extent in moles and v_{i} is the stoichiometric coefficient of the $i^{\text {th }}$ species, sign of which is negative for reactants and positive for products.
Limiting reactant: reactant that would be consumed first if reaction proceeded to completion. Other reactants are excess reactants.
Selectivity: moles of desired product formed $/$ moles of undesired product formed.
Yield: moles of desired product formed $/$ moles that would have been formed if there were no side reactions and limiting reactant had reacted completely.

Chemical Reaction Equilibrium

For reaction

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \leftrightharpoons \mathrm{cC}+\mathrm{dD} \\
& \Delta G^{\mathrm{o}}=-R T \ln K_{a} \\
& K_{a}=\frac{\left(\hat{a}_{C}^{c}\right)\left(\hat{a}_{D}^{d}\right)}{\left(\hat{a}_{A}^{a}\right)\left(\hat{a}_{B}^{b}\right)}=\prod_{i}\left(\hat{a}_{i}\right)^{v_{i}}, \text { where } \\
\hat{a}_{i}= & \text { activity of component } \mathrm{i}=\frac{\hat{f}_{i}}{f_{i}^{o}} \\
f_{i}^{\mathrm{o}}= & \text { fugacity of pure } i \text { in its standard state } \\
v_{i}= & \text { stoichiometric coefficient of component } i \\
\Delta G^{\mathrm{o}}= & \text { standard Gibbs energy change of reaction } \\
K_{a}= & \text { chemical equilibrium constant }
\end{aligned}
$$

For mixtures of ideal gases:

$$
\begin{aligned}
& f_{i}^{0}=\text { unit pressure, often } 1 \text { bar } \\
& \hat{f_{i}}=y_{i} P=p_{i}
\end{aligned}
$$

where $p_{i}=$ partial pressure of component i.
Then $K_{a}=K_{p}=\frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)}=P^{c+d-a-b} \frac{\left(y_{C}^{c}\right)\left(y_{D}^{d}\right)}{\left(y_{A}^{a}\right)\left(y_{B}^{b}\right)}$
For solids $\quad \hat{a}_{i}=1$
For liquids $\quad \hat{a}_{i}=\mathrm{x}_{i} \gamma_{i}$
The effect of temperature on the equilibrium constant is

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d} T}=\frac{\Delta H^{o}}{R T^{2}}
$$

where $\Delta H^{\circ}=$ standard enthalpy change of reaction.

HEATS OF REACTION

For a chemical reaction the associated energy can be defined in terms of heats of formation of the individual species $\left(\Delta \hat{H}_{f}^{o}\right)$ at the standard state

$$
\left(\Delta \hat{\mathrm{H}}_{\mathrm{r}}^{\mathrm{o}}\right)=\sum_{\text {products }} \mathrm{v}_{i}\left(\Delta \hat{\mathrm{H}}_{\mathrm{f}}^{\mathrm{o}}\right)_{i}-\sum_{\text {reactants }} v_{i}\left(\Delta \hat{\mathrm{H}}_{\mathrm{f}}^{\mathrm{o}}\right)_{i}
$$

The standard state is $25^{\circ} \mathrm{C}$ and 1 bar.
The heat of formation is defined as the enthalpy change associated with the formation of a compound from its atomic species as they normally occur in nature (i.e., $\mathrm{O}_{2(\mathrm{~g})}$, $\mathrm{H}_{2(\mathrm{~g})}, \mathrm{C}_{\text {(solid) })}$, etc.)
The heat of reaction for a combustion process using oxygen is also known as the heat of combustion. The principal products are $\mathrm{CO}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(\ell)}$.

CHEMICAL REACTION ENGINEERING

A chemical reaction may be expressed by the general equation

$$
a \mathrm{~A}+b \mathrm{~B} \leftrightarrow c \mathrm{C}+d \mathrm{D} .
$$

The rate of reaction of any component is defined as the moles of that component formed per unit time per unit volume.

$$
\begin{array}{ll}
-r_{A}=-\frac{1}{V} \frac{d N_{A}}{d t} & \text { [negative because A disappears] } \\
-r_{A}=\frac{-d C_{A}}{d t} & \text { if } \mathrm{V} \text { is constant }
\end{array}
$$

The rate of reaction is frequently expressed by

$$
-r_{A}=k f_{r}\left(C_{A}, C_{B}, \ldots .\right), \text { where }
$$

$k=$ reaction rate constant and
$C_{I}=$ concentration of component I.

In the conversion of A, the fractional conversion X_{A} is defined as the moles of A reacted per mole of A fed.

$$
X_{A}=\left(C_{A 0}-C_{A}\right) / C_{A 0} \quad \text { if } \mathrm{V} \text { is constant }
$$

The Arrhenius equation gives the dependence of k on temperature

$$
\begin{aligned}
& k=A e^{-E_{a} / \bar{R} T}, \text { where } \\
A & =\text { pre-exponential or frequency factor, } \\
E_{a}= & \text { activition energy }(\mathrm{J} / \mathrm{mol}, \mathrm{cal} / \mathrm{mol}), \\
T & =\text { temperature }(\mathrm{K}) \text {, and } \\
\bar{R}= & \text { gas law constant }=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) .
\end{aligned}
$$

For values of rate constant $\left(k_{i}\right)$ at two temperatures $\left(T_{i}\right)$,

$$
E_{a}=\frac{R T_{1} T_{2}}{\left(T_{1}-T_{2}\right)} \ln \left(\frac{k_{1}}{k_{2}}\right)
$$

Reaction Order

If $-r_{A}=k C_{A}{ }^{x} C_{B}{ }^{y}$
the reaction is x order with respect to reactant A and y order with respect to reactant B. The overall order is

$$
n=x+y
$$

BATCH REACTOR, CONSTANT T AND V

Zero-Order Reaction

$-r_{A}$	$=k C_{A}{ }^{o}=k(1)$	
$-d C_{A} / d t$	$=k$	or
C_{A}	$=C_{A o}-k t$	
$d X_{A} / d t$	$=k / C_{A o}$	or
$C_{A o} X_{A}$	$=k t$	

First-Order Reaction

$-\mathrm{r}_{A}$	$=k C_{A}$	
$-d C_{A} / d t$	$=k C_{A}$	or
$\ln \left(C_{A} / C_{A o}\right)$	$=-k t$	
$d X_{A} / d t$	$=k\left(1-X_{A}\right)$	or
$\ln \left(1-X_{A}\right)$	$=-k t$	

Second-Order Reaction
$-\mathrm{r}_{A}=k C_{A}{ }^{2}$
$-d C_{A} / d t \quad=k C_{A}{ }^{2}$
or
$1 / C_{A}-1 / C_{A o}=k t$
$d X_{A} / d t \quad=k C_{A o}\left(1-X_{A}\right)^{2}$ or
$X_{A} /\left[C_{A o}\left(1-X_{A}\right)\right]=k t$

Batch Reactor, General

For a well-mixed, constant-volume, batch reactor

$$
\begin{aligned}
& -\mathrm{r}_{A}=-d C_{A} / d t \\
& t=-C_{A o} \int_{o}^{X_{A}} d X_{A} /\left(-r_{A}\right)
\end{aligned}
$$

If the volume of the reacting mass varies with the conversion (such as a variable-volume batch reactor) according to

$$
\mathrm{V}=\mathrm{V}_{\mathrm{X}_{\mathrm{A}=0}}\left(1+\varepsilon_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}\right)
$$

(ie., at constant pressure), where

$$
\varepsilon_{A}=\frac{V_{X_{A}=1}-V_{X_{A}=0}}{V_{X_{A}=0}}
$$

then at any time

$$
C_{A}=C_{A o}\left[\frac{1-X_{A}}{1+\varepsilon_{A} X_{A}}\right]
$$

and

$$
t=-C_{A o} \int_{o}^{X_{A}} d X_{A} /\left[\left(1+\varepsilon_{A} X_{A}\right)\left(-r_{A}\right)\right]
$$

For a first order irreversible reaction,

$$
k t=-\ln \left(1-X_{A}\right)=-\ln \left(1-\frac{\Delta V}{\varepsilon_{A} V_{X A=O}}\right)
$$

FLOW REACTORS, STEADY STATE

Space-time τ is defined as the reactor volume divided by the inlet volumetric feed rate. Space-velocity $S V$ is the reciprocal of space-time, $S V=1 / \tau$.

Plug-Flow Reactor (PFR)

$$
\tau=\frac{C_{A o} V_{P F R}}{F_{A o}}=C_{A o} J_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)} \text {, where }
$$

$\mathrm{F}_{\mathrm{Ao}}=$ moles of A fed per unit time.
Continuous Stirred Tank Reactor (CSTR)
For a constant volume, well-mixed, CSTR

$$
\frac{\tau}{C_{\mathrm{Ao}}}=\frac{V_{\mathrm{CSTR}}}{F_{\mathrm{Ao}}}=\frac{X_{\mathrm{A}}}{-r_{\mathrm{A}}} \text {, where }
$$

$-\mathrm{r}_{A}$ is evaluated at exit stream conditions.

Continuous Stirred Tank Reactors in Series

With a first-order reaction $A \rightarrow R$, no change in volume.

$$
\begin{aligned}
\tau_{N \text {-reactors }} & =N \tau_{\text {individual }} \\
& =\frac{N}{k}\left[\left(\frac{C_{A o}}{C_{A N}}\right)^{1 / N}-1\right], \text { where }
\end{aligned}
$$

$N=$ number of CSTRs (equal volume) in series, and
$C_{A N}=$ concentration of A leaving the N th CSTR.

MASS TRANSFER

Diffusion

Molecular Diffusion

Gas: $\frac{N_{A}}{A}=\frac{p_{A}}{P}\left(\frac{N_{A}}{A}+\frac{N_{B}}{A}\right)-\frac{D_{m}}{R T} \frac{\partial p_{A}}{\partial z}$
Liquid: $\frac{N_{A}}{A}=x_{A}\left(\frac{N_{A}}{A}+\frac{N_{B}}{A}\right)-C D_{m} \frac{\partial x_{A}}{\partial z}$
in which $\left(p_{B}\right)_{l m}$ is the log mean of $p_{B 2}$ and $p_{B 1}$,
Unidirectional Diffusion of a Gas A Through a Second Stagnant Gas B ($\mathrm{N}_{\underline{\mathrm{b}}}=0$)

$$
\frac{N_{A}}{A}=\frac{D_{m} P}{\bar{R} T\left(p_{B}\right)_{\operatorname{lm}}} \times \frac{\left(p_{A 2}-p_{A 1}\right)}{z_{2}-z_{1}}
$$

in which $\left(p_{B}\right)_{\text {lm }}$ is the log mean of $p_{B 2}$ and $p_{B 1}$,
$N_{i}=$ diffusive flow (mole/time) of component i through area A, in z direction, and
$D_{m}=$ mass diffusivity.

EQUIMOLAR COUNTER-DIFFUSION (GASES)
 $\left(N_{B}=-N_{A}\right)$

$$
\begin{aligned}
& N_{A} / A=D_{m} /(\bar{R} T) \times\left[\left(p_{A 1}-p_{A 2}\right) /(\Delta z)\right] \\
& N_{A} / A=D_{m}\left(C_{A 1}-C_{A 2}\right) / \Delta z
\end{aligned}
$$

CONVECTION

Two-Film Theory (for Equimolar Counter-Diffusion)

$$
\begin{aligned}
N_{A} / A & =k_{G}^{\prime}\left(p_{A G}-p_{A i}\right) \\
& =k_{L}^{\prime}\left(C_{A i}-C_{A L}\right) \\
& =K_{G}^{\prime}\left(p_{A G}-p_{A}{ }^{*}\right) \\
& =K_{L}^{\prime}\left(C_{A}^{*}-C_{A L}\right)
\end{aligned}
$$

where $p_{A}{ }^{*}$ is partial pressure in equilibrium with $C_{A L}$, and
$C_{A}{ }^{*}=$ concentration in equilibrium with $p_{A G}$.

Overall Coefficients

$$
\begin{aligned}
& 1 / K_{G}^{\prime}=1 / k_{G}^{\prime}+H / k_{L}^{\prime} \\
& 1 / K_{L}^{\prime}=1 / H k_{G}^{\prime}+1 / k_{L}^{\prime}
\end{aligned}
$$

Dimensionless Group Equation (Sherwood)

For the turbulent flow inside a tube the Sherwood number

$$
\left(\frac{k_{m} D}{D_{m}}\right) \text { is given by: }\left(\frac{k_{m} D}{D_{m}}\right)=0.023\left(\frac{D V \rho}{\mu}\right)^{0.8}\left(\frac{\mu}{\rho D_{m}}\right)^{1 / 3}
$$

where,
$D=$ inside diameter,
$D_{m}=$ diffusion coefficient,
$V=$ average velocity in the tube,
$\rho=$ fluid density, and
$\mu=$ fluid viscosity,
$\mathrm{k}_{\mathrm{m}}=$ mass transfer coefficient.

Distillation

Definitions:
$\alpha=$ relative volatility,
$B=$ molar bottoms-product rate,
$D=$ molar overhead-product rate,
$F=$ molar feed rate,
$L=$ molar liquid downflow rate,
$R_{D}=$ ratio of reflux to overhead product,
$V=$ molar vapor upflow rate,
$W=$ total moles in still pot,
$x=$ mole fraction of the more volatile component in the liquid phase, and
$y=$
mole fraction of the more volatile component in the vapor phase.
Subscripts:
B = bottoms product,
$D=$ overhead product,
$F=$ feed,
$m=$ any plate in stripping section of column,
$m+1=$ plate below plate m,
$n \quad=$ any plate in rectifying section of column,
$n+1=$ plate below plate n, and
$o \quad=$ original charge in still pot.

Flash (or equilibrium) Distillation

Component material balance:

$$
F z_{F}=y V+x L
$$

Overall material balance:

$$
F=V+L
$$

Differential (Simple or Rayleigh) Distillation

$$
\ln \left(\frac{W}{W_{o}}\right)=\int_{x_{o}}^{x} \frac{d x}{y-x}
$$

When the relative volatility α is constant,

$$
y=\alpha x /[1+(\alpha-1) x]
$$

can be substituted to give

$$
\ln \left(\frac{W}{W_{o}}\right)=\frac{1}{(\alpha-1)} \ln \left[\frac{x\left(1-x_{o}\right)}{x_{o}(1-x)}\right]+\ln \left[\frac{1-x_{o}}{1-x}\right]
$$

For binary system following Raoult's Law
$\alpha=(y / x)_{a} /(y / x)_{b}=p_{a} / p_{b}$, where
$p_{i}=$ partial pressure of component i.

Continuous Distillation (binary system)

Constant molal overflow is assumed (trays counted downward)

OVERALL MATERIAL BALANCES

Total Material:

$$
F=D+B
$$

Component A :

$$
F z_{F}=D x_{D}+B x_{B}
$$

OPERATING LINES

Rectifying Section

Total Material:

$$
V_{n+1}=L_{n}+D
$$

Component A :

$$
\begin{aligned}
& V_{n+1} y_{n+1}=L_{n} x_{n}+D x_{D} \\
& y_{n+1}=\left[L_{n} /\left(L_{n}+D\right)\right] x_{n}+D x_{D} /\left(L_{n}+D\right)
\end{aligned}
$$

Stripping Section

Total Material:

$$
L_{m}=V_{m+1}+B
$$

Component A :

$$
\begin{aligned}
& L_{m} x_{m}=V_{m+1} y_{m+1}+B x_{B} \\
& y_{m+1}=\left[L_{m} /\left(L_{m}-B\right)\right] x_{m}-B x_{B} /\left(L_{m}-B\right)
\end{aligned}
$$

Reflux Ratio

Ratio of reflux to overhead product

$$
R_{D}=L_{R} / D=\left(V_{R}-D\right) / D
$$

Minimum reflux ratio is defined as that value which results in an infinite number of contact stages. For a binary system the equation of the operating line is

$$
y=\frac{R_{\min }}{R_{\min }+1} x+\frac{x_{D}}{R_{\min }+1}
$$

Feed Condition Line

$$
\text { slope }=q /(q-1) \text {, where }
$$

$$
q=\frac{\text { heat to convert one mol of feed to saturated vapor }}{\text { molar heat of vaporization }}
$$

Murphree Plate Efficiency
$E_{M E}=\left(y_{n}-y_{n+1}\right) /\left(y_{n}^{*}-y_{n+1}\right)$, where
$y=$ concentration of vapor above plate n,
$y_{n+1}=$ concentration of vapor entering from plate below n, and
$y_{n}^{*}=$ concentration of vapor in equilibrium with liquid leaving plate n.
A similar expression can be written for the stripping section by replacing n with m.

Other Mass Transfer Operations
For additional information concerning solid/fluid separators, membrane separations, and air stripping, refer to the ENVIRONMENTAL ENGINEERING section.

COST ESTIMATION

Cost Indexes

Cost Indexes as Annual Averages		
Year	Marshall and Swift installed- equipment index for the process industry, 1926 $=100$	Chemical engineering plant cost index 1957- $1959=100$
1950	167	79
1960	237	102
1970	301	126
1980	675	261
1990	924	356
2000	1,108	394

Component	Range
Direct costs	
Purchased equipment-delivered (including fabricated equipment and process machinery such as pumps and compressors)	100
Purchased-equipment installation	39-47
Instrumentation and controls (installed)	9-18
Piping (installed)	16-66
Electrical (installed)	10-11
Buildings (including services)	18-29
Yard improvements	10-13
Service facilities (installed)	40-70
Land (if purchase is required)	6
Total direct plant cost	264-346
Indirect costs	
Engineering and supervision	32-33
Construction expenses	34-41
Total direct and indirect plant costs	336-420
Contractor's fee (about 5\% of direct and indirect plant costs)	17-21
Contingency (about 10% of direct and indirect plant costs)	36-42
Fixed-capital investment	387-483
Working capital (about 15% of total capital investment)	68-86
Total capital investment	455-569

Scaling of Equipment Costs

The cost of Unit A at one capacity related to the cost of a similar Unit B with X times the capacity of Unit A is approximately X^{n} times the cost of Unit B.
Cost of Unit $A=$ cost of Unit B $\left(\frac{\text { capacity of Unit A }}{\text { capacity of Unit B }}\right)^{n}$

TYPICAL EXPONENTS (n) FOR EQUIPMENT COST VS. CAPACITY

Equipment	Size range	Exponent
Dryer, drum, single vacuum	$10-10^{2} \mathrm{ft}^{2}$	0.76
Dryer, drum, single atmospheric	$10-10^{2} \mathrm{ft}^{2}$	0.40
Fan, centrifugal	$10^{3}-10^{4} \mathrm{ft}^{3} / \mathrm{min}^{4}$	0.44
Fan, centrifugal	$2 \times 10^{4}-7 \times 10^{4} \mathrm{ft}^{3} / \mathrm{min}$	1.17
Heat exchanger, shell and tube, floating head, c.s.	$100-400 \mathrm{ft}^{2}$	0.60
Heat exchanger, shell and tube, fixed sheet, c.s. Motor, squirrel cage, induction, 440 volts, explosion proof Motor, squirrel cage, induction, 440 volts, explosion proof Tray, bubble cup, c.s.	$5-20 \mathrm{hp}$	0.44
Tray, sieve, c.s.	$20-200 \mathrm{hp}$	0.69

CHEMICAL PROCESS SAFETY

Threshold Limit Value (TLV)

TLV is the lowest dose (ppm by volume in the atmosphere) the body is able to detoxify without any detectable effects. Examples are:

Compound	
Ammonia	
Chlorine	25
Ethyl Chloride	
Ethyl Ether	1,000
	400

Flammability

LFL = lower flammability limit (volume \% in air)
UFL $=$ upper flammability limit (volume $\%$ in air)
A vapor-air mixture will only ignite and burn over the range of concentrations between LFL and UFL. Examples are:

Compound	LFL	UFL
Ethyl alcohol	3.3	19
Ethyl ether	1.9	36.0
Ethylene	2.7	36.0
Methane	5	15
Propane	2.1	9.5

Concentrations of Vaporized Liquids

Vaporization Rate (Q_{m}, mass/time) from a Liquid Surface

$$
\mathrm{Q}_{\mathrm{m}}=\left[\mathrm{MKA}_{\mathrm{S}} \mathrm{P}^{\mathrm{sat}} /\left(\mathrm{R}_{\mathrm{g}} \mathrm{~T}_{\mathrm{L}}\right)\right]
$$

$\mathrm{M}=$ molecular weight of volatile substance
$\mathrm{K}=$ mass transfer coefficient
$\mathrm{A}_{\mathrm{S}}=$ area of liquid surface
$\mathrm{P}^{\text {sat }}=$ saturation vapor pressure of the pure liquid at T_{L}
$\mathrm{R}_{\mathrm{g}}=$ ideal gas constant
$\mathrm{T}_{\mathrm{L}}=$ absolute temperature of the liquid

Mass Flow Rate of Liquid from a Hole in the Wall of a Process Unit

$$
\mathrm{Q}_{\mathrm{m}}=\mathrm{A}_{\mathrm{H}} \mathrm{C}_{\mathrm{o}}\left(2 \rho \mathrm{~g}_{\mathrm{c}} \mathrm{P}_{\mathrm{g}}\right)^{1 / 2}
$$

$\mathrm{A}_{\mathrm{H}}=$ area of hole
$\mathrm{C}_{\mathrm{o}}=$ discharge coefficient
$\rho=$ density of the liquid
$\mathrm{g}_{\mathrm{c}}=$ gravitational constant
$\mathrm{P}_{\mathrm{g}}=$ gauge pressure within the process unit

Concentration ($\mathrm{C}_{\mathrm{ppm}}$) of Vaporized Liquid in
Ventilated Space

$$
\mathrm{C}_{\mathrm{ppm}}=\left[\mathrm{Q}_{\mathrm{m}} \mathrm{R}_{\mathrm{g}} \mathrm{~T} \times 10^{6} /\left(\mathrm{k} \mathrm{Q}_{\mathrm{V}} \mathrm{PM}\right)\right]
$$

$\mathrm{T}=$ absolute ambient temperature
$\mathrm{k}=$ nonideal mixing factor
$\mathrm{Q}_{\mathrm{V}}=$ ventilation rate
$\mathrm{P}=$ absolute ambient pressure
Concentration in the Atmosphere
See "Atmospheric Dispersion Modeling" under
AIR POLLUTION in the ENVIRONMENTAL ENGINEERING section.
Sweep-Through Concentration Change in a Vessel
$\mathrm{Q}_{\mathrm{V}} \mathrm{t}=\mathrm{V} \ln \left[\left(\mathrm{C}_{1}-\mathrm{C}_{\mathrm{o}}\right) /\left(\mathrm{C}_{2}-\mathrm{C}_{\mathrm{o}}\right)\right]$
$\mathrm{Q}_{\mathrm{V}}=$ volumetric flow rate
$\mathrm{t}=$ time
$\mathrm{V}=$ vessel volume
$\mathrm{C}_{\mathrm{o}}=$ inlet concentration
$\mathrm{C}_{1}=$ initial concentration
$\mathrm{C}_{2}=$ final concentration

