Input/Output in MATLAB

CHEN 1703

See also:

- The class wiki page notes on I/O
- Your text book, §3.4 and Appendix C

VERY Basic MATLAB File I/O

Saving variables to files & Loading variables from files

- save filename x y -ASCII
 - filename is the name of the file that you want to write data to.
 - x, y are variables to be written to the file.
 - If omitted, all variables are written.
 - -ASCII tells Matlab to write the data in a format that you can read.
 - If omitted, data will be written in binary format.
 - best for large amounds of data
- load filename x y
 - This is the complimentary command to save.
 - Reads variables x and y from file filename
 - If variables are omitted, all variables are loaded...

```
clear;
x = linspace(-pi,pi);
y = cos(x);
save myVariables x y;

clear;
load myVariables;
who; plot(x,y);
```


Formatted Output in Matlab

- $\mathbf{\hat{y}}$ **disp**(x) prints the contents of variable x.
 - fprintf(...) use for formatted printing
 - Allows much more control over output
 - Syntax: fprintf('text & formatting', variables);
 - Text formatting:
 - %a.bc
 - a minimum width of output buffer
 - b number of digits past decimal point
 - ▶ c formatting scheme
 - ▶ f floating point (typical format) 12.345
 - ▶ e scientific notation 1.2345e1
 - s string format

Control Code	Description	Example
\n	Begin a new line	<pre>fprintf('hello.\n');</pre>
\t	Insert a "tab"	<pre>fprintf('\thello.\n');</pre>
\\	insert a backslash	<pre>fprintf('\\hello.\\\n');</pre>
1 1	Insert a single quote	<pre>fprintf('''hello.''\n');</pre>
000	Insert a % sign	fprintf('%%%1.2f\n',95.6);

```
x = [1.1 2.2 3.3 4.4];
y = 2*x;
fprintf('Hello. (%1.3f,%1.3f), (%1.1f,%1.0f)\n',...
x(1),y(1),x(3),y(3));
```


Hello. (1.100,2.200), (3.3,7)

Formatted Output - Examples

```
fprintf('%6s%8s\n','index','value');
fprintf('----\n');

n = 5;
a = zeros(5,1);
for( i=1:5 )
    a(i) = 2*i+1;
    fprintf('%6.0f%8.1f\n',i,a(i));
end
```

Repeat temperature conversion example using **fprintf** rather than **disp**.

File Output in MATLAB

Three steps:

- Open the file
 - fid = fopen(filename,'w');
 - 'w' tells matlab that we want to WRITE to the file.
 - ▶ see "help fopen" for more information.
- Write to the file
 - fprintf(fid, format, variables);
- Close the file
 - > fclose(fid);

Example:

Temperature conversion example - write results to a file called "tempTable.dat"

File Input in MATLAB

- Import wizard "File→Import Data"
 - Allows you to import data from delimited files (spreadsheets, etc)
- Importing "spreadsheet" data
 - dlmread import data from a delimited file (you choose the delimiter)
 - xlsread import data from Excel.
- General file input three steps:
 - **fid=fopen**(filename, 'r') open a file to allow detailed input control.
 - 'r' tells matlab that we want to READ from the file.
 - a=fscanf(fid,format,size);
 - Works like file writing, but use fscanf rather than fprintf.
 - fid file id that you want to read from
 - format how you want to save the information (string, number)
 - '%s' to read a string, '%f' to read a floating point number, '%e' to read scientific notation.
 - size how many entries to read.
 - ▶ **feof**(fid) returns true if end of file, false otherwise.
 - fclose(fid);

File Input - Example I

General form of an $p(x) = \sum_{i=0}^{n} a_i x^i$

For a quartic (n=4) we have:

$$p(x) = \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

```
clear; clc;
% open a file to read - first line contains
% the order of the polynomial. Second line
% contains the polynomial coefficients.
fid = fopen('poly.dat','r');
% read the order of the polynomial
n = fscanf(fid,'%f',1);
% read all of the polynomial coefficients
a = fscanf(fid,'%f',n+1);
```

"poly.dat"

1.0 2 0.02 4.0 0

"poly.dat"

2
0 1 2.3

File Input - Example 2

Have the user specify the number of elements in a molecule in a file. Read the file and then output the molecular weight. Include H C O N S.

```
Convention: input lines look like:

Element Number

Example:

C 1

H 4
```

Steps:

- I. Set up the MW vector: mw=[mwH mwC mwO mwN mwS];
- 2. Set up the composition vector: nAtoms=zeros(1,5);
- 3. Open the file
- 4. While we aren't at the end of the file
 - I. read a line.
 - 2. Assign the proper entry in nAtoms
- 5. Calculate the mixture molecular weight & output it.

Excel - I/O

- Reading delimited data
 - File→Open (may need to select file type to be "all files")
 - An import wizard opens, allowing you to select delimiters

