Interpolation

CHEN 1703

See also wiki page notes on interpolation.

Example - Vapor Pressure of Water

What is "vapor pressure?"

- → For our purposes: the pressure at which a liquid will boil at a given temperature.
- → Examples: pressure cooker, high-altitude cooking, etc.

Determine vapor pressure of water at:

- 25 °C
- 92 °C
- 105 °C

Concept:

Fit a function to the data, and then evaluate the function wherever we need to.

T (°C)	P (mm Hg)		
0	4.579		
10	9.209		
20	17.535		
30	31.824		
40	55.324		
50	92.51		
60	149.38		
70	233.7		
80	355.I		
85	433.6		
90	525.76		
95	633.9		
98	707.27		
100	760		
101	787.57		

Data could be from experiments, theoretical calculations, etc.

Linear Interpolation

$$y = mx + b$$

$$y_2 = mx_1 + b$$

$$y_2 = mx_2 + b$$

Program this into your calculator.

$$y = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1) + y_1$$

Advantages:

- Easy to use (homework, exams)
- Exact for linear functions

Disadvantages:

 Not very accurate for nonlinear functions

In MATLAB:

yi=interp1(x,y,xi,'linear')

- x independent variable entries (vector)
- y dependent variable entries (vector)
- xi value(s) where you want to interpolate
- yi interpolated value(s) at xi.

Polynomial Interpolation

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$p(x) = \sum_{i=0}^{n} a_i x^i$$

Given n+1 data points, we can fit an n-degree polynomial.

Given: (x_i, y_i) , solve for a_i

Two steps:

- obtain polynomial coefficients
- evaluate the value of the polynomial at the desired location (x_i)

Example: vapor pressure data...

For 4 data points, we can produce a third order polynomial to interpolate them.

$$\begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$

In MATLAB:

- a=polyfit(x,y,n)
 - requires at least n+1 points
 - if you supply more than n+1 points, then regression will be performed (more later).
- yi=polyval(a,xi)
 - evaluates polynomial at point(s) given by xi.

Cubic Spline Interpolation

Concept: use cubic polynomial and "hook" them together over a wide range of data...

Advantages:

- Provides a "smooth" interpolant.
- Usually more accurate than linear interpolation.
- Doesn't get "wiggly" like higherorder polynomial interpolation can.

Disadvantages:

 Requires a bit more work than linear interpolation to implement (we won't discuss this).

```
yi=interp1(x,y,xi,'spline')
```

- x independent variable entries (vector)
- y dependent variable entries (vector)
- xi value(s) where you want to interpolate
- yi interpolated value(s) at xi.

2-D Linear Interpolation

If you have "structured" (tabular) data:

- I. Interpolate in one direction (two I-D interpolations)
- 2. Interpolate in second direction.

Use this for simple homework assignments, in-class exams, etc.

- 'linear' linear interpolation (default)
- 'spline' spline interpolation

x,y may be **vectors** (matlab assumes tabular form), φ must be a **matrix**.

Example - "Real" Gases

$$p\bar{V} = zRT$$

pV=zRT z - "compressibility factor" (1 for ideal gas)

p - pressure

z - compressibility factor

R - gas constant

T - temperature

 \bar{V} - Molar volume

MATLAB

interp2(x,y,φ,xi,yi,'method')

Assumes that x is in columns and y is in rows of the table.

z as a function of T and P

T (K)	Pressure (bar)				
	1	5	10	20	
300	0.9983	0.9915	0.9830	0.9667	
400	0.9995	0.9977	0.9953	0.9912	
600	1.0000	1.0009	1.0020	1.0039	
1000	1.0004	1.0014	1.0035	1.0071	

Source: Perry's Chemical Engineer's Handbook (7th ed.)

Find z at T=725 K and p=8 bar.

$$\phi = \left(\frac{\phi_2 - \phi_1}{x_2 - x_1}\right) (x - x_1) + \phi_1$$

General 2-D Linear Interpolation

Data is NOT

"structured"

$$\phi = ax + by + c$$

$$\phi_{1} = ax_{1} + by_{1} + c$$

$$\phi_{2} = ax_{2} + by_{2} + c$$

$$\phi_{3} = ax_{3} + by_{3} + c$$

$$a = \frac{\phi_{3}(y_{1} - y_{2}) + \phi_{2}(y_{3} - y_{1}) + \phi_{1}(y_{2} - y_{3})}{x_{3}(y_{1} - y_{2}) + x_{2}(y_{3} - y_{1}) + x_{1}(y_{2} - y_{3})},$$

$$b = \frac{\phi_{3}(x_{2} - x_{1}) + \phi_{2}(x_{1} - x_{3}) + \phi_{1}(x_{3} - x_{2})}{y_{3}(x_{2} - x_{1}) + y_{2}(x_{1} - x_{3}) + y_{1}(x_{3} - x_{2})},$$

$$c = \frac{\phi_{3}(x_{1}y_{2} - x_{2}y_{1}) + \phi_{2}(x_{3}y_{1} - x_{1}y_{3}) + \phi_{1}(x_{2}y_{3} - x_{3}y_{2})}{x_{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2})}$$

ϕ =interp2(x,y, ϕ ,xi,yi,'method')

- 'linear' linear interpolation
- 'spline' spline interpolation

 x, y, φ are **matrices** (unique x, y for each φ).