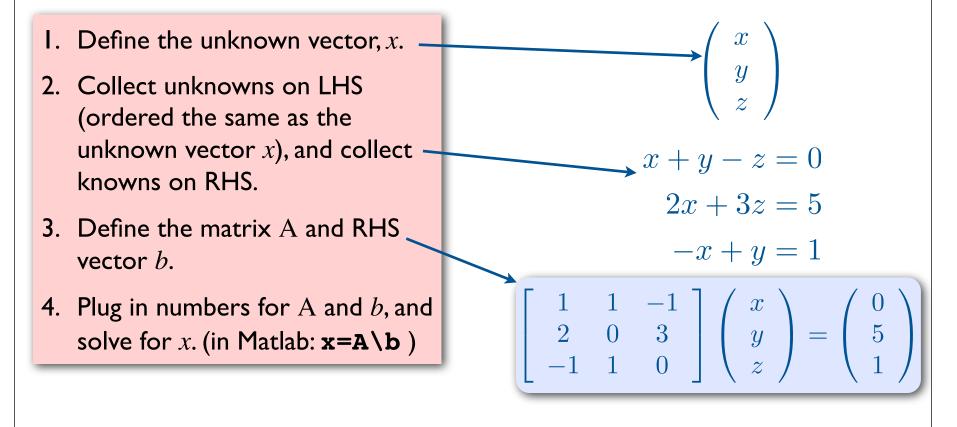

Linear Systems of Equations

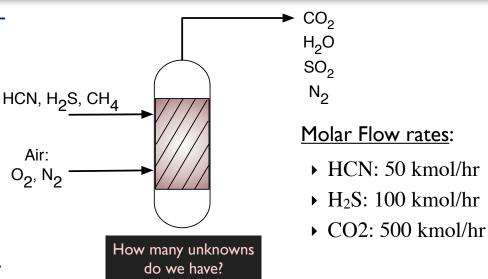
CHEN 1703


Systems of Linear Equations

Any system of linear equations may be written as:

A Very Simple Example

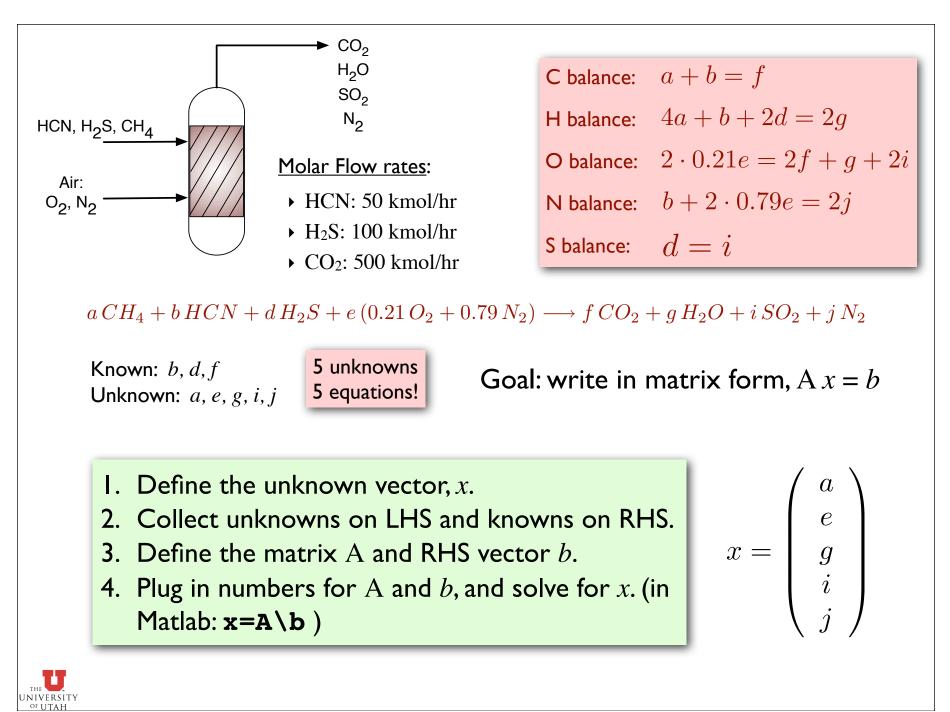
$$x + y = z$$
 $2x = 5 - 3z$ $y = 1 + x$



Example: Incineration

Your company needs to eliminate Hydrogen Sulfide and Cyanide toxins that are a byproduct from one of its processes. You are currently using natural gas (primarily CH₄) to incinerate these toxins.

You know the molar flow rates of HCN, H_2S , and CO_2 . You are asked to determine how much air is required and how much of each of the products will be produced.



 $a CH_4 + b HCN + d H_2S + e (0.21 O_2 + 0.79 N_2) \longrightarrow f CO_2 + g H_2O + i SO_2 + j N_2$

Balance Each Atom:N balance:
$$a + b = f$$
N balance: $b + 2 \cdot 0.79e = 2j$ H balance: $4a + b + 2d = 2g$ S balance: $d = i$ O balance: $2 \cdot 0.21e = 2f + g + 2i$

Thursday, September 11, 2008

JNIVERSITY

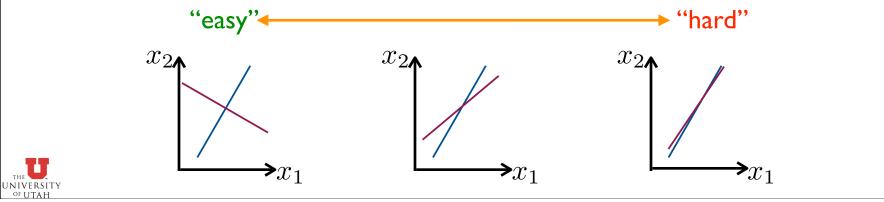
Can a System be Solved?

Example:

- Alex buys three apples, two oranges and a pear \rightarrow \$4.37
- Jenny buys two apples, two oranges \rightarrow \$2.80
- Rob buys I apple, I orange \rightarrow \$1.75

How much does each item cost?

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{pmatrix} x_a \\ x_o \\ x_p \end{pmatrix} = \begin{pmatrix} 4.37 \\ 2.80 \\ 1.75 \end{pmatrix}$$


$$2x_a + 2x_o = 2.80 \\ x_a + x_o = 1.75 \Rightarrow x_a = -x_o + 1.4 \\ x_a + x_o = 1.75 \Rightarrow x_a = -x_o + 1.75$$
• Rob buys I apple, I orange \rightarrow \$1.40
$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{pmatrix} x_a \\ x_o \\ x_p \end{pmatrix} = \begin{pmatrix} 4.37 \\ 2.80 \\ 1.40 \end{pmatrix}$$

$$2x_a + 2x_o = 2.80 \\ x_a + x_o = 1.4 \Rightarrow x_a = -x_o + 1.4 \\ x_a = -x_o + 1.4 \end{cases}$$

$$x_a = x_o + 1.4$$

(Potentially) Useful Tools

see "help matfun" for more options.	Matlab Function	Description	
	det(A)	Calculates the determinant of A. Size of determinant is same as size of A.	det(A) = 0 if Ax=b cannot be solved.
	cond(A)	Calculates the condition number of A. This gives a measure of the difficulty of solving the system of equations.	$cond(A) = \infty$ if $Ax=b$ cannot be solved.
	eig(A)	Calculate the eigenvalues of A. This can also be used to get the eigenvectors	
	rank(A)	Determine the rank of A. If this is less than the size of A, then A cannot be inverted - i.e. it is singular.	Number of independent equations in A.
	lu(A)	Compute the LU factorization of A.	

