Linear Systems of Equations

CHEN 1703

Thursday, September 11, 2008

Systems of Linear Equations

Any system of linear equations may be written as:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{n}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Alternatively, $A x=b$

A Very Simple Example

$$
x+y=z \quad 2 x=5-3 z \quad y=1+x
$$

I. Define the unknown vector, x.
2. Collect unknowns on LHS (ordered the same as the

4. Plug in numbers for A and b, and solve for x. (in Matlab: $\mathbf{x = A} \backslash \mathbf{b}$)
\(\xrightarrow{\left(\begin{array}{l}x

y

z\end{array}\right)}\)| $x+y-z=0$ |
| ---: |
| $2 x+3 z=5$ |
| $-x+y=1$ |
| $\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ -1 & 1 & 0\end{array}\right]\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 5 \\ 1\end{array}\right)$ |

Example: Incineration

Balance Each Atom:
C balance: $\quad a+b=f$
H balance: $4 a+b+2 d=2 g \quad$ S balance: $\quad d=i$
O balance: $2 \cdot 0.21 e=2 f+g+2 i$
UNIVERSIT
OF UTAH
Thursday, September 11, 2008


```
C balance: }a+b=
H balance: }4a+b+2d=2
O balance: 2 }2.0.21e=2f+g+2
N balance:
s balance: }\quadd=
```

$a \mathrm{CH}_{4}+b \mathrm{HCN}+d \mathrm{H}_{2} \mathrm{~S}+e\left(0.21 \mathrm{O}_{2}+0.79 \mathrm{~N}_{2}\right) \longrightarrow f \mathrm{CO}_{2}+g \mathrm{H}_{2} \mathrm{O}+i \mathrm{SO}_{2}+j \mathrm{~N}_{2}$

Known: b, d, f
Unknown: a, e, g, i, j

5 unknowns 5 equations!

Goal: write in matrix form, A $x=b$
I. Define the unknown vector, x.
2. Collect unknowns on LHS and knowns on RHS.
3. Define the matrix A and RHS vector b.
4. Plug in numbers for A and b, and solve for x. (in Matlab: $\mathbf{x = A} \backslash \mathbf{b}$)

$$
x=\left(\begin{array}{l}
a \\
e \\
g \\
i \\
j
\end{array}\right)
$$

Can a System be Solved?

Example:

- Alex buys three apples, two oranges and a pear $\rightarrow \$ 4.37$
- Jenny buys two apples, two oranges $\rightarrow \$ 2.80$
- Rob buys I apple, I orange \rightarrow I. 75

How much does each item cost?
$\left[\begin{array}{lll}3 & 2 & 1 \\
2 & 2 & 0 \\
1 & 1 & 0\end{array}\right]\left(\begin{array}{l}x_{a} \\
x_{o} \\
x_{p}\end{array}\right)=\left(\begin{array}{l}4.37 \\
2.80 \\
1.75\end{array}\right)$

$2 x_{a}+2 x_{o}=2.80 \quad \Rightarrow \quad$| $x_{a}=-x_{o}+1.4$ |
| :---: |
| $x_{a}=-x_{o}+1.75$ |

$x_{a}+x_{o}=1.75 \Rightarrow$

- Rob buys I apple, I orange $\rightarrow \$ 1.40$
$\left[\begin{array}{lll}3 & 2 & 1 \\
2 & 2 & 0 \\
1 & 1 & 0\end{array}\right]\left(\begin{array}{l}x_{a} \\
x_{o} \\
x_{p}\end{array}\right)=\left(\begin{array}{l}4.37 \\
2.80 \\
1.40\end{array}\right)$

$2 x_{a}+2 x_{o}=2.80 \Rightarrow$| $x_{a}=-x_{o}+1.4$ |
| :--- |
| $x_{a}+x_{o}=1.4$ |\quad| $x_{a}=-x_{o}+1.4$ |
| :--- |

(Potentially) Useful Tools

see "help matfun" for more options.

Matlab Function	Description
$\operatorname{det}(\mathrm{A})$	Calculates the determinant of A. Size of determinant is same as size of A.
$\operatorname{cond}(\mathrm{A})$	Calculates the condition number of A. This gives a measure of the difficulty of solving the system of equations.
$\operatorname{eig}(\mathrm{A})$	Calculate the eigenvalues of A. This can also be used to get the eigenvectors...
$\operatorname{rank}(\mathrm{A})$	Determine the rank of A. If this is less than the size of A, then A cannot be inverted - i.e. it is singular.
$\operatorname{lu}(\mathrm{A})$	Compute the LU factorization of A.

$\operatorname{det}(A)=0$ if $A x=b$ cannot be solved.
cond $(\mathrm{A})=\infty$ if $\mathrm{A} x=\mathrm{b}$ cannot be solved.

Number of independent
equations in A .

OF UTAH
Thursday, September 11, 2008

