Matrix \& Vector Multiplication

ChEn I703

Wiki page notes

Matrix-Vector Multiplication

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \quad c=A b=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right)
$$

Rules:

I. b is a column vector with as many rows as there are columns in A
2. C is a column vector with as many

$$
c_{i}=\sum_{j=1}^{n} A_{i, j} b_{j}
$$

Example:

Given coordinates in (x, y), find coordinates in (x^{\prime}, y^{\prime}).

$$
\underbrace{x}_{x}
$$

$$
\begin{array}{rlr}
\binom{x^{\prime}}{y^{\prime}} & =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\binom{x}{y} & (x, y)=(1,1) \\
x^{\prime} & =x \cos \theta+y \sin \theta & \left(x^{\prime}, y^{\prime}\right)=(?, ?) \\
y^{\prime} & =-x \sin \theta+y \cos \theta &
\end{array}
$$

Example:

$A=\left[\begin{array}{ccc}1 & 5 & 2 \\ 3 & 2 & 10\end{array}\right] \quad b=\left(\begin{array}{l}7 \\ 1 \\ 4\end{array}\right)$

Rules:

I. b is a column vector with as many rows as there are columns in A
2. c is a column vector with as many rows as there are in A .

Can they be multiplied (rule I)?
What size is c (rule 2)? $c=\binom{c_{1}}{c_{2}}$

$$
c_{i}=\sum_{j=1}^{n} A_{i, j} b_{j}
$$

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
1 & 5 & 2 \\
3 & 2 & 10
\end{array}\right] \quad b=\left(\begin{array}{l}
7 \\
1 \\
4
\end{array}\right) } & & A=\left[\begin{array}{ccc}
1 & 5 & 2 \\
3 & 2 & 10
\end{array}\right] \quad b=\left(\begin{array}{l}
7 \\
1 \\
4
\end{array}\right) \\
c_{1} & =\sum_{j=1}^{3} A_{1, j} b_{j} & c_{2} & =\sum_{j=1}^{3} A_{2, j} b_{j} \\
& =A_{1,1} b_{1}+A_{1,2} b_{2}+A_{1,3} b_{3} & & =A_{2,1} b_{1}+A_{2,2} b_{2}+A_{2,3} b_{3} \\
& =1 \cdot 7+5 \cdot 1+2 \cdot 4=20 & & =3 \cdot 7+2 \cdot 1+10 \cdot 4=63
\end{aligned}
$$

$$
c=\binom{20}{63}
$$

Matrix-Matrix Multiplication

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 \ell} \\
b_{21} & b_{22} & \cdots & b_{2 \ell} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n \ell}
\end{array}\right]
$$

Matrix-matrix multiplication: $C_{i j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}$

Rules:

I. B has as many rows as A has columns.
2. C has as many rows as A and as many columns as B.

Matlab command:

$$
C=A * B ;
$$

Example: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right] \quad B=\left[\begin{array}{ccc}2 & 4 & 10 \\ 6 & 3 & 1\end{array}\right]$
Can they be multiplied (rule I)?

Rules:

I. B has as many rows as A has columns.
2. C has as many rows as A and as many columns as B.

$$
C_{i j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

Vector Operations - Dot Product

Dot Product (inner product, scalar product)

$$
\vec{a} \bullet \vec{b}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \bullet\left[\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

- $c=\operatorname{dot}(a, b)$;
- $\mathrm{c}=\operatorname{sum}(\mathrm{a} . * \mathrm{~b})$;
- if $\mathrm{a} \& \mathrm{~b}$ are column vectors:
- $\mathrm{c}=\mathrm{a}{ }^{\prime} * \mathrm{~b}$ is the dot product (Why does this work?)

A few other useful tidbits:

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|a||b| \cos \theta \\
& \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
\end{aligned}
$$

$$
|a|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

$$
\begin{aligned}
& \mathbf{a} \cdot \hat{i}=a_{x} \cdot 1+a_{y} \cdot 0=a_{x} \\
& \mathbf{a} \cdot \hat{j}=a_{x} \cdot 0+a_{y} \cdot 1=a_{x} \\
& a_{x}=|a||\hat{i}| \cos \theta \\
& a_{y}=|a||\hat{j}| \cos \alpha
\end{aligned}
$$

‥ \hat{j} unit vector in y direction.

Vector Operations - Cross Product

Cross product (outer product, vector product)

$$
\vec{a} \times \vec{b}=\left[\begin{array}{c}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right] \quad \begin{aligned}
& \vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k} \\
& \vec{b}=b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k}
\end{aligned}
$$

- $\mathbf{c}=\boldsymbol{\operatorname { c r o s s }}(\mathrm{a}, \mathrm{b})$;
- Rules:
- If ordering is forward ($i j k i j k$) then sign is positive.
- If ordering is backward ($k j i k j i$) then sign is negative.
- ii jj kk are zero.
- The "right-hand rule"

A few other useful tidbits:

$$
\begin{aligned}
|\vec{a} \times \vec{b}| & =|\vec{a}||\vec{b}| \sin \theta \\
\vec{a} \times \vec{b} & =-\vec{b} \times \vec{a}
\end{aligned}
$$

