Nonlinear Equations

ChEn 1703

Linear vs. Nonlinear Equations

Linear Equations

$$
y=a x+b
$$

- Has a single, unique solution.
- Can be solved directly (analytically)

Nonlinear Equations

$$
y=\sin (x) \quad y=\sum_{i=1}^{n} a_{i} x^{i}
$$

- May have 0...many solutions
- Sometimes cannot be solved analytically.
- Usually, numerical solutions are iterative, and require a starting guess for the solution.

Polynomials

$$
\begin{aligned}
& \text { Any polynomial may be written as: } p(x)=\sum_{i=0}^{n} a_{i} x^{i} \\
& \text { Example: } \mathrm{n}=3 \quad f(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
\end{aligned}
$$

\% roots (coef)

- provides ALL roots of the polynomial (even imaginary ones).
$\$$ coef - vector of length $n+1$ containing a_{i} values in descending order
- coefficient of highest power is first $\left(a_{n}\right)$
- constant is last $\left(a_{0}\right)$.

Example: find the roots of $y=3 x^{2}-2 x+1$ Check your answer using the quadratic formula.

What do we expect?

Single Nonlinear Equations - Excel

\notin Define a cell for x.

- Define a cell to calculate $f(x)$.
\notin Use Goal Seek (Tools \rightarrow Goal Seek)
- Choose the value you want to set the cell to (0)
- Choose the cell that you want to change (x)

Cancel OK

Example: find the roots of $y=3 x^{2}-2 x+1$
Example: find the roots of $y=3 x^{2}-2 x-1$
Example: find the roots of $f(x)=\sin \left(10 x^{3}\right) \exp \left(-x^{2}\right)$
Use starting guess of $0.1,0.35,0.36,0.75$

Single Nonlinear Equations - MATLAB

use for m-file
 functions

use for built in
functions

use for anonymous
 functions

© fzero('fun', xo) fzero(@fun,xo) fzero(f,xo)

- Looks for the root (zero) of fun near xo.
- fun refers to a function that takes a value x , returns the function value, $f(x)$.
- xo is the starting guess for the solver.
- Can use this for nonlinear regression (could also use for linear regression...)

Steps to Solve a Nonlinear Equation

I. Define the function you are to solve \& write it in residual form $f(x)=0$.
2. Write a matlab function to calculate the value of $f(x)$ given x.
3. Choose an initial guess as best as you can.
4. Use $£$ zero to solve the problem.

Functions with Parameters

$$
y=x^{a} \quad \begin{aligned}
& \text { function } y=\operatorname{myfun}(a, x) \\
& y=x \cdot \wedge a ;
\end{aligned}
$$

What value of x gives $y=5$ when $a=-1.2$?
I. Create an "anonymous function"

- tmpfun=@(x) (myfun(-1.2,x)-5)
- Creates a new function called "tmpfun" that is only a function of x. This function calls myfun with $a=-1.2$.

2. Use fzero on this new function

- xroot=fzero(tmpfun,1.0);

```
clear; clc; close all;
```

a = -1.2;
\% create an anonymous function using
\% myfun with a=-1.2. Set up for use
\% with a solver to determine where it
\% is equal to 5 .
tmpfun $=$ @(x) (myfun(a,x)-5);
\% determine the solution
xroot $=$ fzero(tmpfun,1.0);
\% plot the results
$\mathrm{x}=\operatorname{logspace}(-2,1)$;
loglog(x,myfun(a,x),'k-', ...
xroot,myfun(a, xroot),'ro', ...
x,x*0.0+5,'r-');
\% put the value of the root on the plot
text(xroot, 10, strcat($\mathrm{x}=$ 'num2str(xroot)))

Functions with Parameters

$$
h=h_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

function $h=$ height_accelerate(ho, vo, a, t)

General Function: find t to make $r(t)=0$. $r(t)=h_{0}-h+v_{0} t+\frac{1}{2} a t^{2}$

Polynomial: find t to make $p(t)=0$.
$p(t)=h_{0}-h+v_{0} t+\frac{1}{2} a t^{2}$

```
clear; clc; close all;
ho = 0.0; % initial height (m)
vo = 10.0; % initial velocity (m/s)
a = -9.8; % acceleration m/s^2
h = 1.52; % find t when we are at this h
% Create a temporary function to use with
% fsolve. We need to make a function that
% has time as its only argument.
hsolve=@(t)(height_accelerate(ho,vo,a,t)-h);
t1 = fzero(hsolve,1.0);
t2 = fzero(hsolve,3.0);
% set the polynomial coefficients and
% solve for roots of the polynomial
tt = roots( [a/2,vo,ho-h] )

\section*{Functions with Parameters}


At \(z=0, c_{A}\) is given by \(c_{A}=c_{A}^{\infty}+\left(c_{A}^{\circ}-c_{A}^{\infty}\right) \exp \left(-\beta D_{A}\left(t-t_{\circ}\right)\right)\)
\[
\begin{array}{ll}
c_{A} & \text { Concentration of "A" }-\mathrm{mol} / \mathrm{m}^{3} \\
c_{A}^{\circ} & \text { Concentration of "A" at } t=t_{\mathrm{o}} \\
c_{A}^{\infty} & \text { Concentration of "A" at equilibrium }(t \rightarrow \infty) \\
D_{A} & \text { Diffusivity of "A" }-\mathrm{m}^{2} / \mathrm{s}
\end{array}
\]
I. Create a function to calculate \(c_{A}\).
2. Given \(\beta=0.01 \mathrm{~m}^{-2}, c_{A}{ }^{0}=9 \mathrm{~mol} / \mathrm{m}^{3}, c_{A}{ }^{\infty}=1 \mathrm{~mol} / \mathrm{m}^{3}\), and \(D_{A}=0.1 \mathrm{~m}^{2} / \mathrm{s}\), when will \(c_{A}=2 \mathrm{~mol} / \mathrm{m}^{3}\) ?```

