Linear Regression

CHEN 1703

Motivating Example - Gravity

Experiment I		Experiment 2	
t (s)	$\mathrm{h}(\mathrm{m})$	t (s)	$\mathrm{h}(\mathrm{m})$
0	10	0	10
0.49	9	0.47	9
0.63	8	0.67	8
0.83	7	0.79	7
0.88	6	0.94	6
0.95	5	1.0	5

$v_{o}=0$
From theory: $h=h_{o}+y_{o} t+\frac{1}{2} g t^{2}$
Can we use this data to find the value of g ?
(note $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ on earth)

Linear Least-Squares Regression

Problem: given $f\left(x_{i}\right)$ at points x_{i}, we want to find some constant(s) in $f(x)$ to "best" fit the data.

A linear problem, $y=a x+b$, with m observations that we want to use to determine the "best" a and b :

$$
\left.\begin{array}{rl}
y_{1} & =a x_{1}+b \\
y_{2} & =a x_{2}+b \\
\vdots & y_{m} \\
y_{m} & =a x_{m}+b \\
\vdots & \vdots \\
x_{m} & 1
\end{array}\right] \underbrace{\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
b
\end{array}\right)}_{A}=\underbrace{\left(\begin{array}{c}
a \\
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)}_{b}
$$

Re-cast this system to minimize the error between $f(x)$ and the observations $\left(x_{i}, y_{i}\right)$...

$$
\begin{aligned}
& A^{A^{\top} A \phi=A^{\top} b} \text { "Normal" Equations }
\end{aligned}
$$

Solution: try to write this as a linear problem.

Gravity Example Revisited

Example - Reaction Rate Constant

General Polynomial Regression

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}
$$

Given $m(m>n)$ observations $\left(x_{i}, p_{i}\right)$, find a_{j}.

One equation for each observation (m equations)

$$
\begin{gathered}
\underbrace{\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{m} & x_{m}^{2} & \cdots & x_{m}^{n}
\end{array}\right]}_{A} \underbrace{\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)}_{\phi}=\underbrace{\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
\vdots \\
p_{m}
\end{array}\right)}_{b} \\
A^{\top} A \phi=A^{\top} b
\end{gathered}
$$

NOTE: this is a linear problem for the coefficients, a_{i}.

Recap - Regression

Given a set of observations, and a function that you wish to determine parameters for:

Write the function in a form where the parameters enter linearly as polynomial coefficients.

- May need to rearrange function a bit.
- Sometimes logarithm functions can help accomplish this.

Once you have the function in polynomial form, solve the Normal Equations:

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i} \rightarrow \underbrace{\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2} & \cdots & x_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{m} & x_{m}^{2} & \cdots & x_{m}^{n}
\end{array}\right]}_{c^{i}} \underbrace{\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)}_{\text {(}}=\underbrace{\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
\vdots \\
p_{m}
\end{array}\right)}_{6} \rightarrow \underbrace{A^{\top} A \phi=A^{\top} b}
$$

\otimes Finally, from ϕ, calculate the parameters in the original equation.

Regression - MATLAB

\# Do it "manually" - the way that we just showed.
Polynomial regression: $p=$ polyfit(x, y, n)

- gives the "best fit" for a polynomial of order n through the data.
- if $\mathrm{n}==($ length $(\mathrm{x})-1)$ then you get an interpolant.
- if $\mathrm{n}<($ length $(\mathrm{x})-1)$ then you get a least-squares fit.
- You still must get the problem into a polynomial form.

Linear Least Squares Regression Using Excel

\& Convert data to polynomial form
\& Plot converted data
\oplus Right-click line \& choose "Add Trendline"

- Choose the appropriate trendline type
- Under "options" choose "Display Equation on Chart"
- Also set y-intercept value if known - otherwise it will be calculated as a parameter.
\& Convert parameters back to obtain them for the original equation.

The "R2" Value

How well does the regressed line fit the data?

$$
\begin{gathered}
\hat{\phi}_{i} \text { Value predicted by the function. } \\
\phi_{i} \quad \text { Observed value (data). } \\
\bar{\phi}=\frac{1}{n} \sum_{i=1}^{n} \phi_{i} \quad \text { Average value of } \varphi \\
R^{2}=1-\frac{\sum_{i=1}^{n}\left(\phi_{i}-\hat{\phi}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(\phi_{i}-\bar{\phi}\right)^{2}} \quad \begin{array}{l}
\text { Measure of how well } \\
\text { the line fits the data. }
\end{array} \\
R^{2}=1 \Rightarrow \text { Perfect fit }
\end{gathered}
$$

