Symbolic Calculus

Command	Description	Example	
diff(f,x)	Take the first derivative of f with respect to x .	<pre>syms a x; y = sin(a*x); diff(y,x); diff(cos(a*x), x)</pre>	$\frac{\mathrm{d}}{\mathrm{d}x} (\sin(ax)) = a \cos(ax)$ $\frac{\mathrm{d}}{\mathrm{d}x} (\cos(ax)) = -a \sin(ax)$
diff(f,x,n)	Take the n th derivative of f with respect to x .	syms a x; diff(exp(-a*x), x, 3)	$\frac{\mathrm{d}^3}{\mathrm{d}x^3}\mathrm{e}^{-ax} = -a^3\mathrm{e}^{-ax}$
<pre>int(f,x)</pre>	Indefinite integral of f with respect to x .	syms x; int(1/x, x)	$\int \frac{\mathrm{d}x}{x} = \ln x + C$
<pre>int(f,x,lo,hi)</pre>	Definite integral of f with respect to x from lo to hi .	<pre>syms a b c x; int(cos(c*x),x,a,b)</pre>	$\int_{a}^{b} \cos(cx) dx = \frac{1}{c} \left[\sin(cb) - \sin(ca) \right]$

Differential Equations

ODEs often arise in engineering applications:

- ✓ Kinetics (reaction engineering)
- ✓ Heat transfer
- ✓ Mass transfer

- ✓ Fluid mechanics
- ✓ Process control

Example: kinetics

$$\frac{\mathrm{d}c_A}{\mathrm{d}t} = -\frac{\mathrm{d}c_B}{\mathrm{d}t} = -kc_A$$

Analytic solution...

$$2A \xrightarrow{k} B \xrightarrow{\text{Second order reaction}} dc_A \quad dc_B \xrightarrow{k-2}$$

$$\frac{\mathrm{d}t}{\mathrm{d}t} = -\frac{\kappa c_A}{\mathrm{d}t}$$

Analytic solution...

Example: Newton's Law
$$F = ma$$

 $v \equiv \frac{dy}{dt}$ $a \equiv \frac{dv}{dt}$ \longrightarrow $m\frac{dv}{dt} = \sum F$ $m\frac{d^2y}{dt} = \sum F$
Analytic solution for constant *a*...

Thursday, December 4, 2008

NIVERSI

Symbolic Solution of Differential Equations

Single ODE: $\frac{dy}{dt} = f(y,t)$

- y=dsolve('Dy=f')
- **dsolve**('Dy=f','y(0)=yo')
- Solves the ODE and returns the solution.
- Note special syntax "Dy" for dy/dt.

Two ODEs:
$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = f_1(y,t), \quad \frac{\mathrm{d}y_2}{\mathrm{d}t} = f_2(y,t)$$

- [y1,y2]=**dsolve**('Dy1=f1','Dy2=f2')
- Solves the ODEs and returns the solution as a two-entry vector.

Three (or more) ODEs:
$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = f_1(y,t), \quad \frac{\mathrm{d}y_2}{\mathrm{d}t} = f_2(y,t), \quad \frac{\mathrm{d}y_3}{\mathrm{d}t} = f_3(y,t)$$

- S=dsolve('Dy1=f1','Dy2=f2','Dy3=f3')
- Solves the system of ODEs and returns the solution in a STRUCTURE:
 - S.y1 solution for y1.
 - S.y2 solution for y2.
 - S.y3 solution for y3.

Thursday, December 4, 2008

 $\frac{\mathrm{d}c_A}{\mathrm{d}t} = -kc_A$ syms ca k;
ca=dsolve('Dca=-k*ca');
pretty(ca);

Integral Transforms

Fourier Transform (many applications, including solution of ODEs)

 $F(w) = \int_{-\infty}^{\infty} f(x)e^{-iwx} dx \quad \text{"forward" transform} \quad F=\text{fourier}(f,x)$ $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwx} dw \quad \text{"reverse" transform} \quad f=\text{ifourier}(F,w)$

Laplace Transform (often used in solution of ODEs)

 $F(s) = \int_{0}^{\infty} f(t)e^{-ts} dt \qquad \text{``forward'' transform} \qquad F=\texttt{laplace(f,t)}$ $f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s)e^{ts} ds \qquad \text{``reverse'' transform} \qquad f=\texttt{ilaplace(f,s)}$

THE UNIVERSITY OF UTAH

Thursday, December 4, 2008

Vectorize

🖗 **vectorize**(a)

- Convert expression a into a string.
- Can be used to create a function!

Example: quadratic polynomial

```
syms a b c x;
y = a*x^2 + b*x + c;
s = solve(y,x);
fprintf('%s\n',vectorize(s))
```

$$y = ax^2 + bx + c \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

matrix([[-1./2.*(b-(b.^2-4.*c.*a).^(1./2))./a],[-1./2.*(b+(b.^2-4.*c.*a).^(1./2))./a]])

- I. Rip out the beginning "matrix(" and the end")"
- 2. Copy the remaining output into a function.
- 3. Add function arguments and name as necessary.
- 4. Save the new function.

