Symbolic Calculus

Command	Description	Example	
$\operatorname{diff}(\mathrm{f}, \mathrm{x})$	Take the first derivative of \mathbf{f} with respect to \mathbf{x}.	```syms a x; y = sin(a*x); diff(y,x); diff(cos(a*x), x)```	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}(\sin (a x))=a \cos (a x) \\ & \frac{\mathrm{d}}{\mathrm{~d} x}(\cos (a x))=-a \sin (a x) \end{aligned}$
$\operatorname{diff}(\mathrm{f}, \mathrm{x}, \mathrm{n})$	Take the $\mathrm{n}^{\text {th }}$ derivative of \mathbf{f} with respect to \mathbf{x}.	$\begin{gathered} \text { syms } a x ; \\ \operatorname{diff}(\exp (-a * x), x, 3) \end{gathered}$	$\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}} \mathrm{e}^{-a x}=-a^{3} \mathrm{e}^{-a x}$
int (f,x)	Indefinite integral of \mathbf{f} with respect to \mathbf{x}.	$\begin{gathered} \text { syms } x ; \\ \operatorname{int}(1 / x, x) \end{gathered}$	$\int \frac{\mathrm{d} x}{x}=\ln x+C$
int(f, $\mathrm{x}, \mathrm{lo}, \mathrm{hi}$)	Definite integral of \mathbf{f} with respect to \mathbf{x} from lo to $\mathbf{h i}$.	$\begin{gathered} \text { syms a b c x; } \\ \operatorname{int}\left(\cos \left(c^{*} x\right), x, a, b\right) \end{gathered}$	$\int_{a}^{b} \cos (c x) \mathrm{d} x=\frac{1}{c}[\sin (c b)-\sin (c a)]$

Differential Equations

ODEs often arise in engineering applications:

```
\ Kinetics (reaction engineering)
\(\checkmark\) Fluid mechanics
\(\checkmark\) Heat transfer \(\checkmark\) Process control
\(\checkmark\) Mass transfer
```


Example: kinetics

$A \xrightarrow{k} B$	First order reaction
$\frac{\mathrm{d} c_{A}}{\mathrm{~d} t}=-\frac{\mathrm{d} c_{B}}{\mathrm{~d} t}=-k c_{A}$	$\frac{\mathrm{~d} c_{A}}{\mathrm{~d} t}=-\frac{\mathrm{d} c_{B}}{\mathrm{~d} t}=-k c_{A}^{2}$
Analytic solution...	Analytic solution...

Example: Newton's Law $F=m a$

$$
v \equiv \frac{\mathrm{~d} y}{\mathrm{~d} t} \quad a \equiv \frac{\mathrm{~d} v}{\mathrm{~d} t} \quad \Longrightarrow \quad m \frac{\mathrm{~d} v}{\mathrm{~d} t}=\sum F \quad m \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t}=\sum F
$$

Analytic solution for constant $a \ldots$

Symbolic Solution of Differential Equations

Single ODE: $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=f(y, t)$

- $y=d s o l v e(' D y=f ')$
- dsolve('Dy=f','y(0)=yo')
- Solves the ODE and returns the solution.
- Note special syntax "Dy" for $\mathrm{d} y / \mathrm{d} t$.

$$
\begin{aligned}
& \frac{\mathrm{d} c_{A}}{\mathrm{~d} t}=-k c_{A} \\
& \text { syms ca } \mathrm{k} ; \\
& \text { ca=dsolve('Dca=-k*ca'); } \\
& \text { pretty }(c a) ;
\end{aligned}
$$

Two ODEs: $\quad \frac{\mathrm{d} y_{1}}{\mathrm{~d} t}=f_{1}(y, t), \quad \frac{\mathrm{d} y_{2}}{\mathrm{~d} t}=f_{2}(y, t)$

- [y1,y2]=dsolve('Dy1=f1','Dy2=f2')
- Solves the ODEs and returns the solution as a two-entry vector.

Three (or more) ODEs: $\frac{\mathrm{d} y_{1}}{\mathrm{~d} t}=f_{1}(y, t), \quad \frac{\mathrm{d} y_{2}}{\mathrm{~d} t}=f_{2}(y, t), \quad \frac{\mathrm{d} y_{3}}{\mathrm{~d} t}=f_{3}(y, t)$

- S=dsolve('Dy1=f1','Dy2=f2', 'Dy $3=f 3$ ')
- Solves the system of ODEs and returns the solution in a STRUCTURE:
- S.y1-solution for y 1 .
- S.y2-solution for y2.
- S.y3-solution for y3.

Integral Transforms

Fourier Transform (many applications, including solution of ODEs)

$$
\begin{array}{lll}
F(w)=\int_{-\infty}^{\infty} f(x) e^{-i w x} \mathrm{~d} x & \text { "forward" transform } & \mathrm{F}=\boldsymbol{f o u r i e r}(\mathrm{f}, \mathrm{x}) \\
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(w) e^{i w x} \mathrm{~d} w & \text { "reverse" transform } & \mathrm{f}=\mathbf{i f o u r i e r}(\mathrm{F}, \mathrm{w})
\end{array}
$$

Laplace Transform (often used in solution of ODEs)

$$
\begin{array}{lll}
F(s)=\int_{0}^{\infty} f(t) e^{-t s} \mathrm{~d} t & \text { "forward" transform } & \mathrm{F}=\mathbf{l} \text { aplace }(\mathrm{f}, \mathrm{t}) \\
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) e^{t s} \mathrm{~d} s & \text { "reverse" transform } & \mathrm{f}=\mathbf{i l a p l a c e}(\mathbf{f}, \mathbf{s})
\end{array}
$$

Vectorize

\& vectorize(a)

- Convert expression a into a string.
- Can be used to create a function!

Example: quadratic polynomial

```
syms a b c x;
y = a*x^2 + b*x + c;
s = solve(y,x);
fprintf('%s\n',vectorize(s))
\[
y=a x^{2}+b x+c \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\]
```

$\operatorname{matrix}\left(\left[\left[-1 . / 2 . *\left(b-(b . \wedge 2-4 . * c . * a) .^{\wedge}(1 . / 2)\right) . / a\right],\left[-1 . / 2 . *\left(b+(b . \wedge 2-4 . * c \cdot * a) .^{\wedge}(1 . / 2)\right) \cdot / a\right]\right]\right)$
I. Rip out the beginning"matrix(" and the end")"
2. Copy the remaining output into a function.
3. Add function arguments and name as necessary.
4. Save the new function.

