GMS Equations From Irreversible Thermodynamics

ChEn 6603

References

- E. N. Lightfoot, Transport Phenomena and Living Systems, McGraw-Hill, New York 1978.
- R. B. Bird, W. E. Stewart and E. N. Lightfoot, *Transport Phenomena* 2nd ed., Chapter 24 McGraw-Hill, New York 2007.
- D. Jou, J. Casas-Vazquez, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin 1996.
- R. Taylor, R. Krishna Multicomponent Mass Transfer, John Wiley & Sons, 1993.

• R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, London, 1969.

Outline

Entropy, Entropy transport

Entropy production: "forces" & "fluxes"

- Species diffusive fluxes & the Generalized Maxwell-Stefan Equations
- <u>Heat flux</u>
- Thermodynamic nonidealities & the "Thermodynamic Factor"
- Example: the ultracentrifuge
- Fick's law (the full version)
- Review

A Perspective

Reference velocities

 Allows us to separate a species flux into convective and diffusive components.

Governing equations

• Describe conservation of mass, momentum, energy at the continuum scale.

GMS equations

- Provide a general relationship between species diffusion fluxes and diffusion driving force(s).
- So far, we've assumed:
 - Ideal mixtures (inelastic collisions)
 - "small" pressure gradients

Goal: obtain a more general form of the GMS equations that represents more physics

- Body forces acting differently on different species (e.g. electromagnetic fields)
- Nonideal mixtures
- Large pressure gradients (centrifugal separations)

Entropy

nEntropy differential: $T ds = de + p dv - \sum \tilde{\mu}_i d\omega_i$ $\tilde{\mu}_i = \mu_i / M_i$ Chemical potential per unit mass

Total (substantial/material) derivative: $\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$

$$e$$
 Internal energy

$$v$$
 Specific volume

$$T\rho \frac{\mathrm{D}s}{\mathrm{D}t} = \rho \frac{\mathrm{D}e}{\mathrm{D}t} + p\rho \frac{\mathrm{D}v}{\mathrm{D}t} - \sum_{i=1}^{n} \tilde{\mu}_{i}\rho \frac{\mathrm{D}\omega_{i}}{\mathrm{D}t}$$

$$\rho = 1/v$$

$$T\rho \frac{\mathrm{D}s}{\mathrm{D}t} = \rho \frac{\mathrm{D}e}{\mathrm{D}t} - \frac{p}{\rho} \frac{\mathrm{D}\rho}{\mathrm{D}t} - \sum_{i=1}^{n} \tilde{\mu}_{i}\rho \frac{\mathrm{D}\omega_{i}}{\mathrm{D}t}$$

$$\rho \frac{\mathrm{D}e}{\mathrm{D}t} = -\nabla \cdot \mathbf{q} - \tau : \nabla \mathbf{v} - p\nabla \cdot \mathbf{v} + \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}$$

$$\frac{\mathrm{D}\rho}{\mathrm{D}t} = -\rho \nabla \cdot \mathbf{v}$$

$$\rho \frac{\mathrm{D}\omega_{i}}{\mathrm{D}t} = -\nabla \cdot \mathbf{j}_{i} + \sigma_{i}$$

Entropy Transport

$$T\rho \frac{\mathrm{D}s}{\mathrm{D}t} = -\nabla \cdot \mathbf{q} - \tau : \nabla \mathbf{v} - p\nabla \cdot \mathbf{v} + \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i} + \frac{p}{\rho}\rho\nabla \cdot \mathbf{v} - \sum_{i=1}^{n} \tilde{\mu}_{i} \left(-\nabla \cdot \mathbf{j}_{i} + \sigma_{i}\right),$$

$$= -\nabla \cdot \mathbf{q} - \tau : \nabla \mathbf{v} + \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i} + \sum_{i=1}^{n} \tilde{\mu}_{i}\nabla \cdot \mathbf{j}_{i} - \sum_{i=1}^{n} \tilde{\mu}_{i}\sigma_{i},$$

$$\mathbf{v}(\alpha\beta) = \alpha\nabla\beta + \beta\nabla\alpha$$

$$\rho \frac{\mathrm{D}s}{\mathrm{D}t} = -\underbrace{\nabla \cdot \left[\frac{1}{T}\left(\mathbf{q} - \sum_{i=1}^{n} \tilde{\mu}_{i}\mathbf{j}_{i}\right)\right]}_{\mathrm{Transport of } s} + \underbrace{\mathbf{q} \cdot \nabla\left(\frac{1}{T}\right) - \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \nabla\left(\frac{\tilde{\mu}_{i}}{T}\right) - \frac{1}{T}\tau : \nabla \mathbf{v} + \frac{1}{T}\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i} - \frac{1}{T}\sum_{i=1}^{n} \tilde{\mu}_{i}\sigma_{i}}_{\mathrm{Production of } s}$$

$$\rho \frac{\mathrm{D}s}{\mathrm{D}t} = -\nabla \cdot \left[\frac{1}{T} \left(\mathbf{q} - \sum_{i=1}^{n} \tilde{\mu}_{i} \mathbf{j}_{i} \right) \right] + \mathbf{q} \cdot \nabla \left(\frac{1}{T} \right) - \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \nabla \left(\frac{\tilde{\mu}_{i}}{T} \right) - \frac{1}{T} \tau : \nabla \mathbf{v} + \frac{1}{T} \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i} - \frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}$$

Transport of s

Production of s

 $= \frac{1}{T} \left(\frac{1}{M_i} \frac{\partial \mu_i}{\partial p} \nabla p + \nabla_{T,p} \tilde{\mu}_i \right),$

 $= \frac{1}{T} \left(\frac{V_i}{M_i} \nabla p + \nabla_{T,p} \tilde{\mu}_i \right)$

Now let's write this in the form: $\rho \frac{\mathrm{D}s}{\mathrm{D}t} = -\nabla \cdot \mathbf{j}_s + \sigma_s$

 $\begin{aligned} \mathbf{j}_{s} &= \frac{1}{T} \left(\mathbf{q} - \sum_{i=1}^{n} \tilde{\mu}_{i} \mathbf{j}_{i} \right) & \text{diffusive transport of entropy} \\ \sigma_{s} &= \mathbf{q} \cdot \nabla \left(\frac{1}{T} \right) - \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \nabla \left(\frac{\tilde{\mu}_{i}}{T} \right) - \frac{1}{T} \boldsymbol{\tau} : \nabla \mathbf{v} + \frac{1}{T} \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i} - \frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}, \\ &= -\frac{\mathbf{q}}{T} \cdot \nabla \ln T - \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \left[\nabla \left(\frac{\tilde{\mu}_{i}}{T} \right) - \frac{1}{T} \mathbf{f}_{i} \right] - \frac{1}{T} \boldsymbol{\tau} : \nabla \mathbf{v} - \frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i} \\ & \nabla \left(\frac{\tilde{\mu}_{i}}{T} \right) = \frac{\partial \tilde{\mu}_{i}}{\partial T} \nabla \left(\frac{T}{T} \right) + \frac{1}{T} \frac{\partial \tilde{\mu}_{i}}{\partial p} \nabla p + \frac{1}{T} \nabla_{T, p} \tilde{\mu}_{i}, \end{aligned}$

production of entropy

Note that we haven't "completed" the chain rule here. We will apply it to species later...

$$T\sigma_{s} = -\mathbf{q} \cdot \nabla \ln T - \left[\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \left[\nabla_{T,p}\tilde{\mu}_{i} + \frac{\bar{V}_{i}}{M_{i}}\nabla p - \mathbf{f}_{i}\right]\right] - \boldsymbol{\tau} : \nabla \mathbf{v} - \sum_{i=1}^{n} \tilde{\mu}_{i}\sigma_{i}$$
Look at this term
(entropy production due to species diffusion)

Monday, February 27, 12

Part of the Entropy Source Term...

$$\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \left[\nabla_{T,p} \tilde{\mu}_{i} + \frac{\bar{V}_{i}}{M_{i}} \nabla p - \mathbf{f}_{i} \right] = \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \left(\mathbf{\Lambda}_{i} - \frac{1}{\rho} \nabla p + \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right) \quad \text{Why can we add this "arbitrary" term? What does this term represent?}$$

$$\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \mathbf{\Lambda}_{i} = \sum_{i=1}^{n} \left(\rho \omega_{i}(\mathbf{u}_{i} - \mathbf{v}) \cdot \left[\nabla_{T,p} \tilde{\mu}_{i} + \left(\frac{\bar{V}_{i}}{M_{i}} - \frac{1}{\rho} \right) \nabla p - \mathbf{f}_{i} + \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right] \right), \qquad \mathbf{j}_{i} = \rho \omega_{i} \left(\mathbf{u}_{i} - \mathbf{v} \right)$$

$$= \sum_{i=1}^{n} \left((\mathbf{u}_{i} - \mathbf{v}) \cdot \left[\sum_{i=1}^{n} (\rho \omega_{i}(\mathbf{u}_{i} - \mathbf{v}) \cdot \left[\nabla_{T,p} \tilde{\mu}_{i} + (\phi_{i} - \omega_{i}) \nabla p - \mathbf{f}_{i} + \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right] \right), \qquad \phi_{i} = c_{i} \overline{V}_{i}$$

$$= c_{RT} \sum_{i=1}^{n} \left((\mathbf{u}_{i} - \mathbf{v}) \cdot \left[\sum_{i=1}^{n} (\rho \omega_{i}(\mathbf{u}_{i} - \mathbf{v}) \cdot \left$$

$$cRT\mathbf{d}_{i} = c_{i}\nabla_{T,p}\mu_{i} + (\phi_{i} - \omega_{i})\nabla p - \omega_{i}\rho\left(\mathbf{f}_{i} - \sum_{k=1}^{n}\omega_{k}\mathbf{f}_{k}\right)$$

From physical reasoning (recall \mathbf{d}_i n represents force per unit volume driving diffusion) or the Gibbs-Duhem equation, i=1

Monday, February 27, 12

OF UTAH

The Entropy Source Term - Summary

Interpretation of each term???

$\sigma_s \sim Forces \cdot Fluxes$

$$T\sigma_{s} = -\mathbf{q} \cdot \nabla \ln T - \sum_{i=1}^{n} \frac{cRT}{\rho_{i}} \mathbf{d}_{i} \cdot \mathbf{j}_{i} - \tau : \nabla \mathbf{v} - \sum_{i=1}^{n} \tilde{\mu}_{i}\sigma_{i}$$
Fundamental principle of irreversible $\sigma_{s} = \sum_{\alpha} J_{\alpha}F_{\alpha}$
thermodynamics:
$$\sigma_{s} = \sum_{\alpha} J_{\alpha}F_{\alpha}$$

$$\frac{Flux, J_{\alpha} \quad Force, F_{\alpha}}{\mathbf{q} \qquad -\nabla \ln T}$$

$$\mathbf{j}_{i} \qquad -\frac{cRT}{\rho_{i}}\mathbf{d}_{i}$$

$$\tau \qquad -\nabla \mathbf{v}$$

Fluxes are functions of:

- Thermodynamic state variables: T, p, ω_i .
- <u>Forces</u> of same tensorial order (Curie's postulate)
 - What does this mean?
 - ▶ More soon...

$$J_{\alpha} = J_{\alpha}(F_{1}, F_{2}, \dots, F_{\beta}; T, p, \omega_{i})$$

$$J_{\alpha} = \sum_{\beta} \left(\frac{\partial J_{\alpha}}{\partial F_{\beta}}\right) F_{\beta} + \mathcal{O}(F_{\beta}F_{\gamma})$$

$$\approx \sum_{\beta} L_{\alpha\beta}F_{\beta} \qquad L_{\alpha\beta} \equiv \frac{\partial J_{\alpha}}{\partial F_{\beta}}$$

$$L_{\alpha\beta} = L_{\beta\alpha}$$

 $L_{\alpha\beta}$ - Onsager (phenomenological) coefficients

Species Diffusive Fluxes

Tensorial order of "1" \Rightarrow any vector force may contribute.

Flux: J_{α}	q	\mathbf{j}_i	au
Force: F_{α}	$-\nabla \ln T$	$-rac{cRT}{ ho_i} \mathbf{d}_i$	$-\nabla \mathbf{v}$

Index form:	<i>n</i> -1 dimensional matrix form
From irreversible thermo: n-1	
$\mathbf{j}_i = -\sum_{j=1}^{n-1} L_{ij} \frac{cRT}{\rho_j} \mathbf{d}_j - L_i q \nabla \ln T$	$(\mathbf{j}) = -\rho \left[\mathcal{L}\right] (\mathbf{d}) + \nabla \ln T(\beta_q)$
Fick's Law:	
$\mathbf{j}_i = -\rho \sum_{j=1}^{n-1} D_{ij}^{\circ} \mathbf{d}_j - D_i^T \nabla \ln T \qquad \begin{array}{c} D_{ij} \text{ - Fickian diffusivity} \\ D_i^T \text{ - Thermal Diffusivity} \end{array}$	$(\mathbf{j}) = -\rho \left[D^{\circ} \right] (\mathbf{d}) - \left(D^{T} \right) \nabla \ln T$
Generalized Maxwell-Stefan Equations:	
$\mathbf{d}_{i} = -\sum_{j\neq i}^{n} \frac{x_{i}x_{j}}{\rho D_{ij}} \left(\frac{\mathbf{j}_{i}}{\omega_{i}} - \frac{\mathbf{j}_{j}}{\omega_{j}}\right) - \nabla \ln T \sum_{j\neq i}^{n} x_{i}x_{j}\alpha_{ij}^{T}$	$\rho(\mathbf{d}) = -[B^{on}](\mathbf{j}) - \nabla \ln T [\Upsilon](D^T)$
$\alpha_{ij}^T = \frac{1}{D_{ij}} \left(\frac{D_i^T}{\rho_i} - \frac{D_i^T}{\rho_j} \right)$	

Constitutive Law: Heat Flux

Tensorial order of "1" \Rightarrow any vector force may contribute.

Flux: J_{α}	q	\mathbf{j}_i	au
Force: F_{α}	$-\nabla \ln T$	$-rac{cRT}{ ho_i} \mathbf{d}_i$	$-\nabla \mathbf{v}$

The "Species" term is typically included here, even though it does not come from irreversible thermodynamics. Occasionally radiative terms are also included here...

Monday, February 27, 12

Observations on the GMS Equations

$$\mathbf{d}_{i} = \sum_{j=1}^{n} \frac{x_{i} \mathbf{J}_{j} - x_{j} \mathbf{J}_{i}}{c \mathcal{D}_{ij}} - \nabla \ln T \sum_{j=1}^{n} x_{i} x_{j} \alpha_{ij}^{T}$$
$$cRT\mathbf{d}_{i} = c_{i} \nabla_{T,p} \mu_{i} + (\phi_{i} - \omega_{i}) \nabla p - \omega_{i} \rho \left(\mathbf{f}_{i} - \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right)$$

What have we gained?

- Thermal diffusion (Soret/Dufuor) & its origins.
 - Typically neglected.
- "Full" diffusion driving force
 - Chemical potential gradient (rather than mole fraction). More later.
 - Pressure driving force.
 - When will $\phi_i \neq \omega_i$? More later.
 - Body force term.

Does gravity enter here?

- Onsager coefficients themselves not too important from a "practical" point of view.
- Still don't know how to get the binary diffusivities.

T&K §2.2

The Thermodynamic Factor, Γ

$$\mathbf{d}_{i} = \sum_{j=1}^{n-1} \Gamma_{ij} \nabla x_{j} + \frac{1}{c_{t} RT} (\phi_{i} - \omega_{i}) \nabla p - \frac{\rho_{i}}{c_{t} RT} \left(\mathbf{f}_{i} - \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right) \qquad \underbrace{\text{Note: for}}_{\text{ideal gas,}} \quad p = c_{t} RT$$

NIVERSITY of UTAH T&K §2.3.3

Example: The Ultracentrifuge

Used for separating mixtures based on components' molecular weight.

For a closed centrifuge (no flow) with a known initial charge, what is the equilibrium species profile?

Species equations:
$$\frac{\partial \rho_i}{\partial t} = -\nabla \cdot \mathbf{n_i} + s_i$$
 steady, ID,
no reaction $\frac{\partial n_i}{\partial r} = 0$
 $n_i = \rho_i v_r + j_{i,r} = 0$ $j_{i,r} = J_{i,r} = 0$

$$n_i = \rho_i v_r + j_{i,r} = 0$$
 $j_{i,r} = J_{i,r} =$

GMS Equations:

$$\mathbf{d}_i = \sum_{j=1}^n \frac{x_i \mathbf{J}_j - x_j \mathbf{J}_i}{c \mathcal{D}_{ij}} = 0$$

The generalized diffusion driving force:

$$\mathbf{d}_{i} = \sum_{j=1}^{n-1} \Gamma_{ij} \nabla x_{j} + \frac{1}{c_{t}RT} (\phi_{i} - \omega_{i}) \nabla p - \frac{\omega_{i}\rho}{c_{t}RT} \left(\mathbf{f}_{i} - \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right)$$
$$0 = \sum_{j=1}^{n-1} \Gamma_{ij} \frac{\mathrm{d}x_{j}}{\mathrm{d}r} + \frac{1}{c_{t}RT} (\phi_{i} - \omega_{i}) \frac{\mathrm{d}p}{\mathrm{d}r} - \frac{\omega_{i}\rho}{c_{t}RT} \left(\Omega^{2}r - \sum_{k=1}^{n} \omega_{k} \Omega^{2}r \right)$$
$$\sum_{j=1}^{n-1} \Gamma_{ij} \frac{\mathrm{d}x_{j}}{\mathrm{d}r} = \frac{1}{c_{t}RT} (\omega_{i} - \phi_{i}) \frac{\mathrm{d}p}{\mathrm{d}r}$$

For an ideal gas mixture, $\phi_i = x_i$, and $\Gamma_{ij} = \delta_{ij}$.

$$\frac{\mathrm{d}x_i}{\mathrm{d}r} = \frac{1}{c_t RT} (\omega_i - x_i) \frac{\mathrm{d}p}{\mathrm{d}r}$$

We don't know dp/dr or x_{i0} (composition at r = 0).

$$\frac{\mathrm{d}x_i}{\mathrm{d}r} = \frac{1}{c_t RT} (\omega_i - x_i) \frac{\mathrm{d}p}{\mathrm{d}r}$$
Species mole balance:

$$\int_0^{r_L} cx_i 2\pi r \,\mathrm{d}r = \int_0^{r_L} c^* x_i^* 2\pi r \,\mathrm{d}r \quad \stackrel{\text{indicates the initial condition (pure stream).}}{\sum_{j=1}^{r_L} c^* x_i^* 2\pi r \,\mathrm{d}r} \quad \stackrel{\text{indicates the initial condition (pure stream).}}{\sum_{j=1}^{r_L} cx_i (r) \text{ to integrate this.}}$$
For species i,
$$\int_0^{r_L} p x_i r \,\mathrm{d}r = p^* x_i^* \frac{r_L^2}{2}$$
Must know $p(r)$ and $x_i(r)$ to integrate this.
Species mole balance constrains the species profile solution (dictates the species boundary condition)
Momentum:
$$\frac{\partial \rho \mathbf{v}}{\partial t} = -\nabla \cdot (\rho \mathbf{v} \mathbf{v}) - \nabla \cdot \boldsymbol{\tau} - \nabla p + \rho \sum_{i=1}^n \omega_i \mathbf{f}_i$$
at steady state
$$\frac{\mathrm{d}p}{\mathrm{d}r} = \rho \sum_{i=1}^n \omega_i f_{r,i} = \rho \Omega^2 r$$

$$\frac{\mathrm{d}p}{\mathrm{d}r} = \rho \Omega^2 r = \frac{pM}{RT} \Omega^2 r$$
We don't know p_0 (pressure at $r = 0$).

Total mole balance (at equilibrium):

* indicates the initial condition (pure stream).

$$\mathrm{dV} = L2\pi r \mathrm{d}r \qquad c = \frac{p}{R7}$$

Substitute p(r) and solve this for p_{0} ...

Total mole balance constrains the pressure solution (dictates the pressure boundary condition)

$$\begin{array}{ll} \begin{array}{ll} \mbox{Solve these} & \frac{\mathrm{d}x_i}{\mathrm{d}r} = \frac{M}{RT}(\omega_i - x_i)\Omega^2 r & \frac{\mathrm{d}p}{\mathrm{d}r} = \rho\Omega^2 r = \frac{pM}{RT}\Omega^2 r \\ \hline \\ \mbox{With these} & \int_0^{r_L} p \, x_i \, r \, \mathrm{d}r = p^* x_i^* \frac{r_L^2}{2} & \int_0^{r_L} p r \, \mathrm{d}r = p^* \frac{r_L^2}{2} \end{array}$$

<u>Note</u>: *M* couples all of the equations together and makes them nonlinear.

Option A:

- I. Guess x_{i0} , p_0 .
- 2. Numerically solve the ODEs for x_i , p.
- 3. Are the constraints met? If not, return to step 1.

Option B:

Try to simplify the problem by making approximations.

Note: for tips on solving ODEs numerically in Matlab, see my wiki page.

<u>Example</u>: separation of Air into N_2 , O_2 .

• Centrifuge diameter: 20 cm • Air initially at STP

Approximation Level I

- Approximate M as constant, $(M_{O2}+M_{N2})/2$, for the pressure equation only. This decouples the pressure solution from the species and gives an easy analytic solution for pressure profile.
- Solve species equations numerically, given the analytic pressure profile.

Approximation Level 2

- Approximate M as constant, $(M_{O2}+M_{N2})/2$, for the species and pressure equations.
- Obtain a fully analytic solution for both species and pressure.

Monday, February 27, 12

Fick's Law (revisited)

$$\mathbf{d}_{i} = -\sum_{j=1}^{n} \frac{x_{i} x_{j}}{\rho D_{ij}} \left(\frac{\mathbf{j}_{i}}{\omega_{i}} - \frac{\mathbf{j}_{j}}{\omega_{j}} \right) - \nabla \ln T \sum_{j=1}^{n} x_{i} x_{j} \alpha_{ij}^{T}$$

$$= -\sum_{j=1}^{n} \frac{x_{j} \mathbf{J}_{i} - x_{i} \mathbf{J}_{j}}{c D_{ij}} - \nabla \ln T \sum_{j=1}^{n} x_{i} x_{j} \alpha_{ij}^{T} \qquad \mathbf{J} = -c[B]^{-1}(\mathbf{d}) - \nabla \ln T (D^{T})$$

$$\mathbf{d}_{i} = \sum_{j=1}^{n-1} \Gamma_{ij} \nabla x_{j} + \frac{1}{c_{t} R T} (\phi_{i} - \omega_{i}) \nabla p - \frac{\rho_{i}}{c_{t} R T} \left(\mathbf{f}_{i} - \sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k} \right)$$
This is the same [B] matrix as before (T&K eq. 2.1.21-2.1.22)

Ignoring thermal diffusion,

$$(\mathbf{J}) = \underbrace{-c[B]^{-1}[\Gamma](\nabla x)}_{1} - \underbrace{\frac{\nabla p}{RT}[B]^{-1}\left((\phi) - (\omega)\right)}_{2} - \underbrace{\frac{\rho}{RT}[B]^{-1}[\omega]\left((\mathbf{f}) - [\omega](\mathbf{f} + \mathbf{f}_n)\right)}_{3}$$

<u>Notes</u>: $[D]=[B]^{-1}[\Gamma]$

For ideal mixtures: $[\Gamma]=[I]$

In the binary case: $D_{11}=\Gamma_{11}D_{12}$

How do we interpret each term? When is each term important?

Review: Where we are, where we're going...

Secomplishments

- Defined "reference velocities" and "diffusion fluxes"
- Governing equations for multicomponent, reacting flow.
 mass-averaged velocity...
- Established a rigorous way to compute the diffusive fluxes from first principles.
 - Can handle diffusion in systems of arbitrary complexity, including:
 - nonideal mixtures, EM fields, large pressure & temperature gradients, multiple species, chemical reaction, etc.
- Simplifications for ideal mixtures, negligible pressure gradients, etc.
- Solutions for "simple" problems.

🖗 Still Missing:

• Models for binary diffusivities.

• Given a model, we are good to go!

Roadmap:

- Models for binary diffusivities. (T&K Chapter 4) - we won't cover this...
- Simplified models for multicomponent diffusion
- Interphase mass transfer (surface discontinuities)
- Turbulence models for diffusion in turbulent flow.
- Combined heat, mass, momentum transfer.