GMS Equations From Irreversible

Thermodynamics

ChEn 6603

References

- E. N. Lightfoot, Transport Phenomena and Living Systems, McGraw-Hill, New York 1978.
- R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena $2^{\text {nd }}$ ed., Chapter 24 McGraw-Hill, New York 2007.
- D. Jou, J. Casas-Vazquez, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin 1996.
- R. Taylor, R. Krishna Multicomponent Mass Transfer, John Wiley \& Sons, 1993.
- R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, London, 1969.

Outline

Entropy, Entropy transport
Entropy production:"forces" \& "fluxes"

- Species diffusive fluxes \& the Generalized Maxwell-Stefan Equations
- Heat flux
- Thermodynamic nonidealities \& the "Thermodynamic Factor"

Example: the ultracentrifuge
\&ick's law (the full version)
\& Review

A Perspective

$\$$ Reference velocities

- Allows us to separate a species flux into convective and diffusive components.
* Governing equations
- Describe conservation of mass, momentum, energy at the continuum scale.
\% GMS equations
- Provide a general relationship between species diffusion fluxes and diffusion driving force(s).
- So far, we've assumed:
- Ideal mixtures (inelastic collisions)
, "small" pressure gradients

Goal: obtain a more general form of the GMS equations that represents more physics

- Body forces acting differently on different species (e.g. electromagnetic fields)
- Nonideal mixtures
- Large pressure gradients (centrifugal separations)

Entropy

Entropy differential: $T \mathrm{~d} s=\mathrm{d} e+p \mathrm{~d} v-\sum_{i=1}^{n} \tilde{\mu}_{i} \mathrm{~d} \omega_{i}$
$\tilde{\mu}_{i}=\mu_{i} / M_{i} \begin{aligned} & \text { Chemical potential } \\ & \text { per unit mass }\end{aligned}$
e Internal energy
Total (substantial/material) derivative: $\frac{\mathrm{D}}{\mathrm{D} t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla$
v Specific volume

Entropy Transport

$$
\begin{aligned}
T \rho \frac{\mathrm{D} s}{\mathrm{D} t} & =-\nabla \cdot \mathbf{q}-\tau: \nabla \mathbf{v}-p \nabla \cdot \mathbf{v}+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}+\frac{p}{\rho} \rho \nabla \cdot \mathbf{v}-\sum_{i=1}^{n} \tilde{\mu}_{i}\left(-\nabla \cdot \mathbf{j}_{i}+\sigma_{i}\right), \\
& =-\underline{\nabla} \cdot \mathbf{q}-\tau: \nabla \mathbf{v}+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}+\sum_{i=1}^{n} \tilde{\mu}_{i} \nabla \cdot \mathbf{j}_{i}-\sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}
\end{aligned}
$$

$$
\rho \frac{\mathrm{D} s}{\mathrm{D} t}=-\underbrace{\nabla \cdot\left[\frac{1}{T}\left(\mathbf{q}-\sum_{i=1}^{n} \tilde{\mu}_{i} \mathbf{j}_{i}\right)\right]}_{\text {Transmort of } s}+\underbrace{\mathbf{q} \cdot \nabla\left(\frac{1}{T}\right)-\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \nabla\left(\frac{\tilde{\mu}_{i}}{T}\right)-\frac{1}{T} \tau: \nabla \mathbf{V}^{\prime}+\frac{1}{T} \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}-\frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}}_{\text {Production of } s}
$$

$$
\rho \frac{\mathrm{D} s}{\mathrm{D} t}=-\underbrace{\nabla \cdot\left[\frac{1}{T}\left(\mathbf{q}-\sum_{i=1}^{n} \tilde{\mu}_{i} \mathbf{j}_{i}\right)\right]}_{\text {Transport of } s}+\underbrace{\mathbf{q} \cdot \nabla\left(\frac{1}{T}\right)-\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \nabla\left(\frac{\tilde{\mu}_{i}}{T}\right)-\frac{1}{T} \tau: \nabla \mathbf{v}+\frac{1}{T} \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}-\frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}}_{\text {Production of } s}
$$

Now let's write this in the form: $\rho \frac{\mathrm{D} s}{\mathrm{D} t}=-\nabla \cdot \mathbf{j}_{s}+\sigma_{s}$

$$
\begin{aligned}
& \mathbf{j}_{s}= \frac{1}{T}\left(\mathbf{q}-\sum_{i=1}^{n} \tilde{\mu}_{i} \mathbf{j}_{i}\right) \text { diffusive transport of entropy } \\
& \sigma_{s}=\mathbf{q} \cdot \nabla\left(\frac{1}{T}\right)-\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \nabla\left(\frac{\tilde{\mu}_{i}}{T}\right)-\frac{1}{T} \boldsymbol{\tau}: \nabla \mathbf{v}+\frac{1}{T} \sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}-\frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}, \\
&=-\frac{\mathbf{q}}{T} \cdot \nabla \ln T-\sum_{i=1}^{n} \mathbf{j}_{i} \cdot\left[\nabla\left(\frac{\tilde{\mu}_{i}}{T}\right)\right.\left.-\frac{1}{T} \mathbf{f}_{i}\right]-\frac{1}{T} \boldsymbol{\tau}: \nabla \mathbf{v}-\frac{1}{T} \sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i} \\
& \nabla\left(\frac{\tilde{\mu}_{i}}{T}\right)=\frac{\partial \tilde{\mu}_{i}}{\partial T} \nabla\left(\frac{T}{T}\right)+\frac{1}{T} \frac{\partial \tilde{\mu}_{i}}{\partial p} \nabla p+\frac{1}{T} \nabla_{T, p} \tilde{\mu}_{i}, \\
&=\frac{1}{T}\left(\frac{1}{M_{i}} \frac{\partial \mu_{i}}{\partial p} \nabla p+\nabla_{T, p} \tilde{\mu}_{i}\right), \\
&=\frac{1}{T}\left(\frac{\bar{V}_{i}}{M_{i}} \nabla p+\nabla_{T, p} \tilde{\mu}_{i}\right)
\end{aligned}
$$

Note that we haven't "completed" the chain rule here. We will apply it to species later...

$$
T \sigma_{s}=-\mathbf{q} \cdot \nabla \ln T-\underbrace{\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \underbrace{\left[\nabla_{T, p} \tilde{\mu}_{i}+\frac{\bar{V}_{i}}{M_{i}} \nabla p-\mathbf{f}_{i}\right]}_{\text {(entropy production due to species diffusion) }}}_{\text {Look at this term }}-\boldsymbol{\tau}: \nabla \mathbf{v}-\sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}
$$

Part of the Entropy Source Term...

$$
\begin{aligned}
& \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \underbrace{\left[\nabla_{T, p} \tilde{\mu}_{i}+\frac{\bar{V}_{i}}{M_{i}} \nabla p-\mathbf{f}_{i}\right]}_{\boldsymbol{\Lambda}_{i}}=\sum_{i=1}^{n} \mathbf{j}_{i} \cdot\left(\boldsymbol{\Lambda}_{\boldsymbol{i}}-\frac{1}{\rho} \nabla p+\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right) \quad \begin{array}{l}
\text { Why can we add this "arbitrary" term? } \\
\text { What does this term represent? }
\end{array} \\
& \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \mathbf{\Lambda}_{i}=\sum_{i=1}^{n}\left(\rho \omega_{i}\left(\mathbf{u}_{i}-\mathbf{v}\right) \cdot\left[\nabla_{T, p} \tilde{\mu}_{i}+\left(\frac{\bar{V}_{i}}{M_{i}}-\frac{1}{\rho}\right) \nabla p-\mathbf{f}_{i}+\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right]\right), \\
& \left.=\sum^{n}\left(\mathbf{u}_{i}-\mathbf{v}\right) \cdot\left[\operatorname{c}_{T, p} \mu_{i}+\left(\phi_{i}-\omega_{i}\right) \nabla p-\rho \omega_{i}\left(\mathbf{f}_{i}-\sum^{n} \omega_{i} \mathbf{f}_{k}\right)\right]\right) \quad \frac{\omega_{i}}{M_{i}}=\frac{x_{i}}{M} \\
& =\sum_{i=1}^{n}\left(\mathbf{u}_{i}-\mathbf{v}\right) \cdot[\underbrace{c_{i} \nabla_{T, p} \mu_{i}+\left(\phi_{i}-\omega_{i}\right) \nabla p-\rho \omega_{i}\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right)}_{c R T \mathbf{d}_{i}}]) \\
& \phi_{i}=c_{i} \bar{V}_{i} \\
& =c R T \sum_{i=1}^{n} \mathbf{d}_{i} \cdot\left(\mathbf{u}_{i}-\mathbf{v}\right), \\
& =c R T \sum_{i=1}^{n} \frac{1}{\rho \omega_{i}} \mathbf{d}_{i} \cdot \mathbf{j}_{i} \\
& \mathbf{j}_{i}=\rho \omega_{i}\left(\mathbf{u}_{i}-\mathbf{v}\right) \\
& \tilde{\mu}_{i}=\frac{\mu_{i}}{M_{i}} \\
& \bar{V}_{i} \quad \text { Partial molar } \\
& \text { volume. }
\end{aligned}
$$

$$
c R T \mathbf{d}_{i}=c_{i} \nabla_{T, p} \mu_{i}+\left(\phi_{i}-\omega_{i}\right) \nabla p-\omega_{i} \rho\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right)
$$

From physical reasoning (recall \mathbf{d}_{i} represents force per unit volume driving diffusion) or the GibbsDuhem equation,

$$
\sum_{i=1}^{n} \mathbf{d}_{i}=0
$$

The Entropy Source Term - Summary

$$
\begin{aligned}
& \rho \frac{\mathrm{D} s}{\mathrm{D} t}=-\nabla \cdot \mathbf{j}_{s}+\sigma_{s} \\
& \mathbf{j}_{s}=\frac{1}{T}\left(\mathbf{q}-\sum_{i=1}^{n} \tilde{\mu}_{i} \mathbf{j}_{i}\right) \\
& \text { From the previous slide: } \\
& \sum_{i=1}^{n} \mathbf{j}_{i} \cdot \mathbf{\Lambda}_{i}=c R T \sum_{i=1}^{n} \frac{\mathbf{d}_{i} \cdot \mathbf{j}_{i}}{\rho_{i}} \\
& c R T \mathbf{d}_{i}=c_{i} \nabla_{T, p} \mu_{i}+\left(\phi_{i}-\omega_{i}\right) \nabla p-\omega_{i} \rho\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right) \\
& T \sigma_{s}=-\mathbf{q} \cdot \nabla \ln T-\sum_{i=1}^{n} \mathbf{j}_{i} \cdot \underbrace{\left[\nabla_{T, p} \tilde{\mu}_{i}+\frac{\bar{V}_{i}}{M_{i}} \nabla p-\mathbf{f}_{i}\right]}_{\mathbf{\Lambda}_{i}}-\tau: \nabla \mathbf{v}-\sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i} \\
& =-\underbrace{\mathbf{q} \cdot \nabla \ln T}_{1}-\underbrace{\sum_{i=1}^{n} \frac{c R T}{\rho_{i}} \mathbf{d}_{i} \cdot \mathbf{j}_{i}}_{2}-\underbrace{\tau: \nabla \mathbf{v}}_{3}-\underbrace{\sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}}_{4}
\end{aligned}
$$

Interpretation of each term???

$\sigma_{s} \sim$ Forces • Fluxes

$$
T \sigma_{s}=-\mathbf{q} \cdot \nabla \ln T-\sum_{i=1}^{n} \frac{c R T}{\rho_{i}} \mathbf{d}_{i} \cdot \mathbf{j}_{i}-\tau: \nabla \mathbf{v}-\sum_{i=1}^{n} \tilde{\mu}_{i} \sigma_{i}
$$

Fundamental
principle of irreversible thermodynamics:

$$
\sigma_{s}=\sum_{\alpha} J_{\alpha} F_{\alpha}
$$

Fluxes are functions of:

- Thermodynamic state variables: T, p, ω_{i}.
- Forces of same tensorial order (Curie's postulate)
-What does this mean?
- More soon...

Flux, J_{α}	Force, F_{α}
\mathbf{q}	$-\nabla \ln T$
\mathbf{j}_{i}	$-\frac{c R T}{\rho_{i}} \mathbf{d}_{i}$
τ	$-\nabla \mathbf{v}$

$$
\begin{array}{r}
J_{\alpha}=J_{\alpha}\left(F_{1}, F_{2}, \ldots, F_{\beta} ; T, p, \omega_{i}\right) \\
J_{\alpha}=\sum_{\beta}\left(\frac{\partial J_{\alpha}}{\partial F_{\beta}}\right) F_{\beta}+\mathcal{O}\left(F_{\beta} F_{\gamma}\right) \\
\approx \sum_{\beta} L_{\alpha \beta} F_{\beta} \quad L_{\alpha \beta} \equiv \frac{\partial J_{\alpha}}{\partial F_{\beta}} \\
L_{\alpha \beta}=L_{\beta \alpha}
\end{array}
$$

$L_{\alpha \beta}$ - Onsager (phenomenological) coefficients

Species Diffusive Fluxes

Tensorial order of " 1 " \Rightarrow any vector force may contribute.

Flux: J_{α}	\mathbf{q}	\mathbf{j}_{i}	τ
Force: F_{α}	$-\nabla \ln T$	$-\frac{c R T}{\rho_{i}} \mathbf{d}_{i}$	$-\nabla \mathbf{v}$

Index form: $\quad n$-1 dimensional matrix form

From irreversible thermo:

$$
\mathbf{j}_{i}=-\sum_{j=1}^{n-1} L_{i j} \frac{c R T}{\rho_{j}} \mathbf{d}_{j}-L_{i} q \nabla \ln T
$$

$$
(\mathbf{j})=-\rho[\mathcal{L}](\mathbf{d})+\nabla \ln T\left(\beta_{q}\right)
$$

Fick's Law:

$$
\mathbf{j}_{i}=-\rho \sum_{j=1}^{n-1} D_{i j}^{\circ} \mathbf{d}_{j}-D_{i}^{T} \nabla \ln T \quad \begin{gathered}
D_{i j} \text { - Fickian diffusivity } \\
D_{i}^{T} \text { - Thermal Diffusivity }
\end{gathered}
$$

$(\mathbf{j})=-\rho\left[D^{\circ}\right](\mathbf{d})-\left(D^{T}\right) \nabla \ln T$

Generalized Maxwell-Stefan Equations:

$$
\begin{array}{r}
\left.\left.\mathbf{d}_{i}=-\sum_{j \neq i}^{n} \frac{x_{i} x_{j}}{\rho Đ_{i j}}\left(\frac{\mathbf{j}_{i}}{\omega_{i}}-\frac{\mathbf{j}_{j}}{\omega_{j}}\right)-\nabla \ln T \sum_{j \neq i}^{n} x_{i} x_{j} \alpha_{i j}^{T} \right\rvert\, \rho(\mathbf{d})=-\left[B^{o n}\right](\mathbf{j})-\nabla \ln T[\Upsilon]\left(D^{T}\right)\right) \\
\alpha_{i j}^{T}=\frac{1}{\ni_{i j}}\left(\frac{D_{i}^{T}}{\rho_{i}}-\frac{D_{i}^{T}}{\rho_{j}}\right)
\end{array}
$$

Constitutive Law: Heat Flux

Tensorial order of " 1 " \Rightarrow any vector force may contribute.

Flux: J_{α}	\mathbf{q}	\mathbf{j}_{i}	τ
Force: F_{α}	$-\nabla \ln T$	$-\frac{c R T}{\rho_{i}} \mathbf{d}_{i}$	$-\nabla \mathbf{v}$

$$
\mathbf{q}=\underbrace{-\lambda \nabla T}_{\text {Fourier }}+\underbrace{\sum_{i=1}^{n} h_{i} \mathbf{j}_{i}}_{\text {Species }}+\underbrace{\sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{c R T D^{T} x_{i} x_{j}}{\rho_{i} 円_{i j}}\left(\frac{\mathbf{j}_{i}}{\rho_{i}}-\frac{\mathbf{j}_{j}}{\rho_{j}}\right)}_{\text {Dufour }}
$$

here we have substituted the RHS of the GMS equations for \mathbf{d}_{i}.

Note: the Dufour effect is usually neglected.

The "Species" term is typically included here, even though it does not come from irreversible thermodynamics. Occasionally radiative terms are also included here...

Observations on the GMS Equations

$$
\begin{gathered}
\int \mathbf{d}_{i}=\sum_{j=1}^{n} \frac{x_{i} \mathbf{J}_{j}-x_{j} \mathbf{J}_{i}}{c D_{i j}}-\nabla \ln T \sum_{j=1}^{n} x_{i} x_{j} \alpha_{i j}^{T} \\
c R T \mathbf{d}_{i}=c_{i} \nabla_{T, p} \mu_{i}+\left(\phi_{i}-\omega_{i}\right) \nabla p-\omega_{i} \rho\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right)
\end{gathered}
$$

What have we gained?

- Thermal diffusion (Soret/Dufuor) \& its origins.
- Typically neglected.
- "Full" diffusion driving force
- Chemical potential gradient (rather than mole fraction). More later.
- Pressure driving force.
- When will $\phi_{i} \neq \omega_{i}$? More later.
- Body force term.
- Does gravity enter here?

Onsager coefficients themselves not too important from a "practical" point of view.
\$Still don't know how to get the binary diffusivities.

$$
\mathbf{d}_{i}=\frac{x_{i}}{R T} \nabla_{T, p} \mu_{i}+\frac{1}{c_{t} R T}\left(\phi_{i}-\omega_{i}\right) \nabla p-\frac{\rho_{i}}{c_{t} R T}\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right)
$$

$$
\begin{aligned}
\mu_{i} & =\mu_{i}\left(T, p, x_{j}\right) \\
\nabla_{T, p} \mu_{i} & =\left.\sum_{j=1}^{n-1} \frac{\partial \mu_{i}}{\partial x_{j}}\right|_{T, p, \Sigma} \nabla x_{j} \\
\mu_{i}(T, p) & =\mu_{i}^{\circ}+R T \ln \gamma_{i} x_{i}
\end{aligned}
$$

$$
\frac{x_{i}}{R T} \nabla_{T, p} \mu_{i}=\left.\frac{x_{i}}{R T} \sum_{j=1}^{n-1} \frac{\partial \mu_{i}}{\partial x_{j}}\right|_{T, p, \Sigma} \nabla x_{j}
$$

$$
=\left.\frac{x_{i}}{R T} \sum_{j=1}^{n-1} R T \frac{\partial \ln \gamma_{i} x_{i}}{\partial x_{j}}\right|_{T, p, \Sigma} \nabla x_{j}
$$

γ - Activity coefficient Many models available (see T\&K Appendix D)

$$
\begin{aligned}
& =x_{i} \sum_{j=1}^{n-1}\left(\frac{\partial \ln x_{i}}{\partial x_{j}}+\left.\frac{\partial \ln \gamma_{i}}{\partial x_{j}}\right|_{T, P, \Sigma}\right) \nabla x_{j} \\
& =\sum_{j=1}^{n-1}\left(\delta_{i j}+\left.x_{i} \frac{\partial \ln \gamma_{i}}{\partial x_{j}}\right|_{T, p, \Sigma}\right) \nabla x_{j}
\end{aligned}
$$

$$
\Gamma_{i j} \equiv \delta_{i j}+\left.x_{i} \frac{\partial \ln \gamma_{i}}{\partial x_{j}}\right|_{T, p, \Sigma} \quad=\sum_{j=1}^{n-1} \Gamma_{i j} \nabla x_{j}
$$

$$
\mathbf{d}_{i}=\sum_{j=1}^{n-1} \Gamma_{i j} \nabla x_{j}+\frac{1}{c_{t} R T}\left(\phi_{i}-\omega_{i}\right) \nabla p-\frac{\rho_{i}}{c_{t} R T}\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right)
$$

$\begin{aligned} & \text { Note: for } \\ & \text { ideal gas, }\end{aligned} \quad p=c_{t} R T$

Example:The Ultracentrifuge

Used for separating mixtures based on components' molecular weight.

Consider a closed system... depleted in dense species

For a closed centrifuge (no flow) with a known initial charge, what is the equilibrium species profile?

Species equations: $\quad \frac{\partial \rho_{i}}{\partial t}=-\nabla \cdot \mathbf{n}_{\mathbf{i}}+s_{i} \underset{\substack{\text { steady, } \mathrm{ID}, \\ \text { no reaction }}}{ } \frac{\partial n_{i}}{\partial r}=0$

$$
n_{i}=\rho_{i} v_{r}+j_{i, r}=0 \quad \longrightarrow \quad j_{i, r}=J_{i, r}=0
$$

GMS Equations: $\quad \mathbf{d}_{i}=\sum_{j=1}^{n} \frac{x_{i} \mathbf{J}_{j}-x_{j} \mathbf{J}_{i}}{c Đ_{i j}}=0$
The generalized diffusion driving force:

$$
\begin{aligned}
\mathbf{d}_{i} & =\sum_{j=1}^{n-1} \Gamma_{i j} \nabla x_{j}+\frac{1}{c_{t} R T}\left(\phi_{i}-\omega_{i}\right) \nabla p-\frac{\omega_{i} \rho}{c_{t} R T}\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right) \\
0 & =\sum_{j=1}^{n-1} \Gamma_{i j} \frac{\mathrm{~d} x_{j}}{\mathrm{~d} r}+\frac{1}{c_{t} R T}\left(\phi_{i}-\omega_{i}\right) \frac{\mathrm{d} p}{\mathrm{~d} r}-\frac{\omega_{i} \rho}{c_{t} R T}\left(\Omega^{2} r-\sum_{k=1}^{n} \omega_{k} \Omega^{2} r\right) \\
\sum_{j=1}^{n-1} \Gamma_{i j} \frac{\mathrm{~d} x_{j}}{\mathrm{~d} r} & =\frac{1}{c_{t} R T}\left(\omega_{i}-\phi_{i}\right) \frac{\mathrm{d} p}{\mathrm{~d} r}
\end{aligned}
$$

For an ideal gas mixture, $\phi_{i}=x_{i}$, and $\Gamma_{i j}=\delta_{i j}$.

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} r}=\frac{1}{c_{t} R T}\left(\omega_{i}-x_{i}\right) \frac{\mathrm{d} p}{\mathrm{~d} r} \quad \begin{gathered}
\text { We don't know } \mathrm{d} p / \mathrm{d} r \text { or } x_{i 0} \\
\text { (composition at } r=0 \text {). }
\end{gathered}
$$

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} r}=\frac{1}{c_{t} R T}\left(\omega_{i}-x_{i}\right) \frac{\mathrm{d} p}{\mathrm{~d} r}
$$

Species mole balance:

$$
\int_{0}^{r_{L}} c x_{i} 2 \pi r \mathrm{~d} r=\int_{0}^{r_{L}} c^{*} x_{i}^{*} 2 \pi r \mathrm{~d} r
$$

* indicates the initial condition (pure stream).

For species $i, \quad \int_{0}^{r_{L}} \frac{p}{4} x_{i} r \mathrm{~d} r=p^{*} x_{i}^{*} \frac{r_{L}^{2}}{2}$
Must know $p(r)$ and $x_{i}(r)$ to integrate this.

Momentum: $\frac{\partial \rho \mathbf{v}}{\partial t}=-\nabla \cdot(\rho \mathbf{v v})-\nabla \cdot \boldsymbol{\tau}-\nabla p+\rho \sum_{i=1}^{n} \omega_{i} \mathbf{f}_{\mathbf{i}}$
$\begin{aligned} & \text { at steady state } \\ & \text { (no flow): }\end{aligned} \frac{\mathrm{d} p}{\mathrm{~d} r}=\rho \sum_{i=1}^{n} \omega_{i} f_{r, i}=\rho \Omega^{2} r$

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=\rho \Omega^{2} r=\frac{p M}{R T} \Omega^{2} r \quad \begin{aligned}
& \text { We don't know } p_{0} \\
& \text { (pressure at } r=0 \text {). }
\end{aligned}
$$

The momentum equation gives the pressure profile, but is coupled to the species equations through M.

Total mole balance (at equilibrium):

$$
\begin{aligned}
& \int_{V} c \mathrm{dV}=\int_{V} c^{*} \mathrm{~d} V \quad * \text { indicates the initial condition (pure stream). } \\
& \int_{0}^{r_{L}} c r \mathrm{~d} r=c^{*} \frac{r_{L}^{2}}{2} \\
& \mathrm{~d} \mathrm{~V}=L 2 \pi r \mathrm{~d} r \quad c=\frac{p}{R T} \\
& \int_{0}^{r_{L}} p r \mathrm{~d} r=p^{*} \frac{r_{L}^{2}}{2} \\
& \text { Substitute } p(r) \text { and solve this for } p_{0} \ldots \\
& \text { Total mole balance constrains the pressure solution } \\
& \text { (dictates the pressure boundary condition) }
\end{aligned}
$$

Solve these equations:	$\frac{\mathrm{d} x_{i}}{\mathrm{~d} r}=\frac{M}{R T}\left(\omega_{i}-x_{i}\right) \Omega^{2} r$	$\frac{\mathrm{~d} p}{\mathrm{~d} r}=\rho \Omega^{2} r=\frac{p M}{R T} \Omega^{2} r$
With these constraints: $\int_{0}^{r_{L}} p x_{i} r \mathrm{~d} r=p^{*} x_{i}^{*} \frac{r_{L}^{2}}{2}$	$\int_{0}^{r_{L}} p r \mathrm{~d} r=p^{*} \frac{r_{L}^{2}}{2}$	

Note: M couples all of the equations together and makes them nonlinear.

Option A:

I. Guess $x_{i 0}, p_{0}$.
2. Numerically solve the ODEs for x_{i}, p.

Option B:

Try to simplify the problem
by making approximations.
3. Are the constraints met? If not, return to step I .

Note: for tips on solving ODEs numerically in Matlab, see my wiki page.

Example: separation of Air into $\mathrm{N}_{2}, \mathrm{O}_{2}$.

- Centrifuge diameter: 20 cm
- Air initially at STP

Approximation Level I

- Approximate M as constant, $\left(M_{\mathrm{O} 2}+M_{\mathrm{N} 2}\right) / 2$, for the pressure equation only. This decouples the pressure solution from the species and gives an easy analytic solution for pressure profile.
- Solve species equations numerically, given the analytic pressure profile.

Approximation Level 2

- Approximate M as constant, $\left(M_{\mathrm{O} 2}+M_{\mathrm{N} 2}\right) / 2$, for the species and pressure equations.
- Obtain a fully analytic solution for both species and pressure.

Fick's Law (revisited)

$\mathbf{d}_{i}=-\sum_{j=1}^{n} \frac{x_{i} x_{j}}{\rho Đ_{i j}}\left(\frac{\mathbf{j}_{i}}{\omega_{i}}-\frac{\mathbf{j}_{j}}{\omega_{j}}\right)-\nabla \ln T \sum_{j=1}^{n} x_{i} x_{j} \alpha_{i j}^{T}$
$=-\sum_{j=1}^{n} \frac{x_{j} \mathbf{J}_{i}-x_{i} \mathbf{J}_{j}}{c Đ_{i j}}-\nabla \ln T \sum_{j=1}^{n} x_{i} x_{j} \alpha_{i j}^{T}$
$\mathbf{d}_{i}=\sum_{j=1}^{n-1} \Gamma_{i j} \nabla x_{j}+\frac{1}{c_{t} R T}\left(\phi_{i}-\omega_{i}\right) \nabla p-\frac{\rho_{i}}{c_{t} R T}\left(\mathbf{f}_{i}-\sum_{k=1}^{n} \omega_{k} \mathbf{f}_{k}\right)$
$\mathbf{J}=-c[B]^{-1}(\mathbf{d})-\nabla \ln T\left(D^{T}\right)$
This is the same $[B]$ matrix as

Ignoring thermal diffusion,

$$
(\mathbf{J})=\underbrace{-c[B]^{-1}[\Gamma](\nabla x)}_{1}-\underbrace{\frac{\nabla p}{R T}[B]^{-1}((\phi)-(\omega))}_{2}-\underbrace{\frac{\rho}{R T}[B]^{-1}[\omega]\left((\mathbf{f})-[\omega]\left(\mathbf{f}+\mathbf{f}_{n}\right)\right)}_{3}
$$

Notes: $[D]=[B]^{-1}[\Gamma]$
For ideal mixtures: $[\Gamma]=[I]$
In the binary case: $D_{11}=\Gamma_{11} Ð_{12}$
How do we interpret each term?
When is each term important?

Review:

Where we are, where we're going...

\AA Accomplishments

- Defined "reference velocities" and "diffusion fluxes"
- Governing equations for multicomponent, reacting flow. - mass-averaged velocity...
- Established a rigorous way to compute the diffusive fluxes from first principles.
- Can handle diffusion in systems of arbitrary complexity, including:
- nonideal mixtures, EM fields, large pressure \& temperature gradients, multiple species, chemical reaction, etc.
- Simplifications for ideal mixtures, negligible pressure gradients, etc.
- Solutions for "simple" problems.

Still Missing:

- Models for binary diffusivities.
- Given a model, we are good to go!

Roadmap:

- Models for binary diffusivities. (T\&K Chapter 4) - we won't cover this...
- Simplified models for multicomponent diffusion
- Interphase mass transfer (surface discontinuities)
- Turbulence - models for diffusion in turbulent flow.
- Combined heat, mass, momentum transfer.

