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Outline

Entropy, Entropy transport
Entropy production: “forces” & “fluxes”
• Species diffusive fluxes & the Generalized Maxwell-Stefan Equations

• Heat flux

• Thermodynamic nonidealities & the “Thermodynamic Factor”

Example: the ultracentrifuge
Fick’s law (the full version)
Review
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A Perspective
Reference velocities
• Allows us to separate a species 

flux into convective and 
diffusive components.

Governing equations
• Describe conservation of mass, 

momentum, energy at the 
continuum scale.

GMS equations
• Provide a general relationship 

between species diffusion fluxes 
and diffusion driving force(s).

• So far, we’ve assumed:
‣ Ideal mixtures (inelastic collisions)

‣ “small” pressure gradients

Goal: obtain a more general 
form of the GMS equations 
that represents more 
physics
• Body forces acting differently 

on different species (e.g. 
electromagnetic fields)

• Nonideal mixtures

• Large pressure gradients 
(centrifugal separations)
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Entropy
Entropy differential:

Total (substantial/material) derivative:
Specific volumev

� = 1/v

D�

Dt
= ��⇤ · v �

D⇤i

Dt
= �⇤ · ji + ⇥i

D
Dt
⇥ �

�t
+ v ·⇤

Chemical potential
per unit massµ̃i = µi/MiTds = de + pdv �

nX

i=1

µ̃id!i

Internal energye

T⇢
Ds

Dt
= ⇢

De

Dt
+ p⇢

Dv

Dt
�

nX

i=1

µ̃i⇢
D!i

Dt

T⇢
Ds

Dt
= ⇢

De

Dt
� p

⇢

D⇢

Dt
�

nX

i=1

µ̃i⇢
D!i

Dt

⇢
De

Dt
= �r · q� ⌧ : rv � pr · v +

nX

i=1

fi · ji
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Entropy Transport

chain rule...

�(�⇥) = ��⇥ + ⇥��

T⇥
Ds

Dt
= �⇤ · q� ⌅ : ⇤v � p⇤ · v +

n�

i=1

fi · ji +
p

⇥
⇥⇤ · v �

n�

i=1

µ̃i (�⇤ · ji + ⇤i) ,

= �⇤ · q� ⌅ : ⇤v +
n�

i=1

fi · ji +
n�

i=1

µ̃i⇤ · ji �
n�

i=1

µ̃i⇤i,

⇥
Ds

Dt
= �⇤ ·

⇧
1
T

⇤
q�

n⌥

i=1

µ̃iji

⌅⌃

⌦  � ↵
Transport of s

+q ·⇤
�

1
T

⇥
�

n⌥

i=1

ji ·⇤
�

µ̃i

T

⇥
� 1

T
⌅ : ⇤v +

1
T

n⌥

i=1

fi · ji �
1
T

n⌥

i=1

µ̃i⇤i

⌦  � ↵
Production of s
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�
Ds

Dt
= �⇤ · js + ⇥sNow let’s write this in the form:

Look at this term
(entropy production due to species diffusion)

⇥
Ds

Dt
= �⇤ ·

⇧
1
T

⇤
q�

n⌥

i=1

µ̃iji

⌅⌃

⌦  � ↵
Transport of s

+q ·⇤
�

1
T

⇥
�

n⌥

i=1

ji ·⇤
�

µ̃i

T

⇥
� 1

T
⌅ : ⇤v +

1
T

n⌥

i=1

fi · ji �
1
T

n⌥

i=1

µ̃i⇤i

⌦  � ↵
Production of s

js =
1
T

�
q�

n⇤

i=1

µ̃iji

⇥

⇥s = q ·⇤
�

1
T

⇥
�

n⇧

i=1

ji ·⇤
�

µ̃i

T

⇥
� 1

T
� : ⇤v +

1
T

n⇧

i=1

fi · ji �
1
T

n⇧

i=1

µ̃i⇥i,

= �q
T

·⇤ lnT �
n⇧

i=1

ji ·
⇤
⇤

�
µ̃i

T

⇥
� 1

T
fi

⌅
� 1

T
� : ⇤v � 1

T

n⇧

i=1

µ̃i⇥i

T⇥s = �q ·⇤ lnT �
n⇤

i=1

ji ·
�
⇤T,pµ̃i +

V̄i

Mi
⇤p� fi

⇥

⌃ ⇧⌅ ⌥
�i

�� : ⇤v �
n⇤

i=1

µ̃i⇥i

diffusive transport of entropy

production 
of entropy

�
�

µ̃i

T

⇥
=

�µ̃i

�T
�

�
T

T

⇥
+

1
T

�µ̃i

�p
�p +

1
T
�T,pµ̃i,

=
1
T

�
1

Mi

�µi

�p
�p +�T,pµ̃i

⇥
,

=
1
T

�
V̄i

Mi
�p +�T,pµ̃i

⇥

Note that we 
haven’t “completed” 
the chain rule here.  
We will apply it to 

species later...
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Part of the Entropy Source Term…
Why can we add this “arbitrary” term?
What does this term represent?

From physical reasoning (recall di 
represents force per unit volume 
driving diffusion) or the Gibbs-
Duhem equation,

n�

i=1

di = 0

�i

Mi
=

xi

M

�i = ciV̄i

µ̃i =
µi

Mi

ji = �⇥i (ui � v)

V̄i Partial molar 
volume.

cRTdi = ci⇥T,pµi + (⇤i � ⌅i)⇥p� ⌅i⇥

�
fi �

n⇤

k=1

⌅kfk

⇥

n⇧

i=1

ji ·
�
⇥T,pµ̃i +

V̄i

Mi
⇥p� fi

⇥

� ⌥⌃  
�i

=
n⇧

i=1

ji ·
⇤

�i �
1
�
⇥p +

n⇧

k=1

⇥kfk

⌅

nX

i=1

ji · �i =
nX

i=1

 
�⇤i(ui � v) ·

"
⇥T,pµ̃i +

✓
V̄i

Mi
� 1

�

◆
⇥p� fi +

nX

k=1

⇤kfk

#!
,

=
nX

i=1

0

BBBB@
(ui � v) ·

2

66664
ci⇥T,pµi + (⇥i � ⇤i)⇥p� �⇤i

 
fi �

nX

k=1

⇤kfk

!

| {z }
cRTdi

3

77775

1

CCCCA
,

= cRT
nX

i=1

di · (ui � v),

= cRT
nX

i=1

1
�⇤i

di · ji
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The Entropy Source Term - Summary

Interpretation of each term???

�
Ds

Dt
= �⇤ · js + ⇥s

From the previous slide:
n�

i=1

ji · �i = cRT
n�

i=1

di · ji
�i

js =
1
T

�
q�

n⇤

i=1

µ̃iji

⇥

cRTdi = ci⇥T,pµi + (⇤i � ⌅i)⇥p� ⌅i⇥

�
fi �

n⇤

k=1

⌅kfk

⇥

T⇤s = �q ·⇤ lnT �
n⇤

i=1

ji ·
�
⇤T,pµ̃i +

V̄i

Mi
⇤p� fi

⇥

⌃ ⇧⌅ ⌥
�i

�⌅ : ⇤v �
n⇤

i=1

µ̃i⇤i

= �q ·⇤ lnT⌃ ⇧⌅ ⌥
1

�
n⇤

i=1

cRT

⇥i
di · ji

⌃ ⇧⌅ ⌥
2

� ⌅ : ⇤v⌃ ⇧⌅ ⌥
3

�
n⇤

i=1

µ̃i⇤i

⌃ ⇧⌅ ⌥
4

8Monday, February 27, 12



 σs ∼ Forces ⋅ Fluxes

Fundamental 
principle of 
irreversible 

thermodynamics:

�s =
�

�

J�F�

T⇤s = �q ·⇤ lnT �
n�

i=1

cRT

⇥i
di · ji � ⌅ : ⇤v �

n�

i=1

µ̃i⇤i

Flux, J� Force, F�

q �⇥ lnT
ji � cRT

⇥i
di

� �⇥v

Lαβ - Onsager (phenomenological) coefficients

J� = J�(F1, F2, . . . , F⇥ ; T, p, �i)

L�⇥ �
�J�

�F⇥

J� =
⇤

⇥

�
�J�

�F⇥

⇥
F⇥ +O (F⇥F⇤)

�
⇤

⇥

L�⇥F⇥

Fluxes are functions of:
• Thermodynamic state variables:  

T, p, ωi.

• Forces of same tensorial order 
(Curie’s postulate)
‣What does this mean?

‣More soon…

L�⇥ = L⇥�
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Species Diffusive Fluxes
Tensorial order of  “1” ⇒ any 
vector force may contribute.

From irreversible thermo:

Fick’s Law:

Generalized Maxwell-Stefan Equations:

Index form: n-1 dimensional matrix form

DT
i - Thermal Diffusivity

Flux: J� q ji �
Force: F� �⇥ lnT � cRT

⇥i
di �⇥v

⇢(d) = �[Bon](j)�r lnT [⌥](DT )di = �
nX

j 6=i

xixj

⇥Ðij

✓
ji
⇤i
� jj

⇤j

◆
�r lnT

nX

j 6=i

xixj�
T
ij

�T
ij =

1
Ðij

✓
DT

i

⇥i
� DT

i

⇥j

◆

Dij - Fickian diffusivity

(j) = �⇥ [L] (d) +⇥ lnT (�q)ji = �
n�1X

j=1

Lij
cRT

⇢j
dj � Liqr lnT

ji = �⇢
n�1X

j=1

D�
ijdj �DT

i r lnT (j) = �⇢ [D�] (d)�
�
DT

�
r lnT
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Constitutive Law: Heat Flux

Choose Lqq=λT to 
obtain “Fourier’s Law”

 “Dufuor” effect - mass driving 
force can cause heat flux!

 Usually neglected.

Tensorial order of  “1” ⇒ any 
vector force may contribute.

Flux: J� q ji �
Force: F� �⇥ lnT � cRT

⇥i
di �⇥v

q = �Lqq⇥ lnT �
n�

i=1

Lqi
cRT

�i
di

The “Species” term is typically included here, even though it does not come from 
irreversible thermodynamics.  Occasionally radiative terms are also included here...

here we have substituted 
the RHS of the GMS 

equations for di.
q = ��rT| {z }

Fourier

+
nX

i=1

hiji
| {z }
Species

+
nX

i=1

nX

j 6=i

cRTDT xixj

⇥iÐij

✓
ji
⇥i
� jj

⇥j

◆

| {z }
Dufour Note: the Dufour effect 

is usually neglected.
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Observations on the GMS Equations

What have we gained?
• Thermal diffusion (Soret/Dufuor) 

& its origins.
‣ Typically neglected.

• “Full” diffusion driving force
‣Chemical potential gradient (rather than 

mole fraction). More later.
‣ Pressure driving force.
‣ When will φi ≠ ωi?  More later.

‣ Body force term.
‣ Does gravity enter here?

Onsager coefficients themselves 
not too important from a 
“practical” point of view.
Still don’t know how to get the 
binary diffusivities.

cRTdi = ci⇥T,pµi + (⇤i � ⌅i)⇥p� ⌅i⇥

�
fi �

n⇤

k=1

⌅kfk

⇥

di =
n�

j=1

xiJj � xjJi

cDij
�⇥ lnT

n�

j=1

xixj�
T
ij
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The Thermodynamic Factor, Γ

xi

RT
�T,pµi =

xi

RT

n�1⌅

j=1

⇧µi

⇧xj

����
T,p,�

�xj ,

=
xi

RT

n�1⌅

j=1

RT
⇧ ln �ixi

⇧xj

����
T,p,�

�xj ,

= xi

n�1⌅

j=1

⇥
⇧ lnxi

⇧xj
+

⇧ ln �i

⇧xj

����
T,P,�

⇤
�xj ,

=
n�1⌅

j=1

⇥
⇥ij + xi

⇧ ln �i

⇧xj

����
T,p,�

⇤
�xj ,

=
n�1⌅

j=1

�ij�xj

γ - Activity coefficient
Many models available
(see T&K Appendix D)

�ij � ⇥ij + xi
⇤ ln �i

⇤xj

����
T,p,�

T&K §2.2

µi(T, p) = µ�
i + RT ln �ixi

µi = µi(T, p, xj)

�T,pµi =
n�1⇥

j=1

�µi

�xj

����
T,p,

P
�xj

di =
xi

RT
⇥T,pµi +

1
ctRT

(⇥i � ⇤i)⇥p� �i

ctRT

�
fi �

n⇤

k=1

⇤kfk

⇥

di =
n�1⇤

j=1

�ij⇥xj +
1

ctRT
(⇥i � ⇤i)⇥p� �i

ctRT

�
fi �

n⇤

k=1

⇤kfk

⇥
Note: for 
ideal gas, 

p = ctRT
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Example: The Ultracentrifuge
Used for separating mixtures based on components’ molecular weight.

f = fi = �2r

T&K §2.3.3

�
⌦

depleted in 
dense species

For a closed centrifuge (no flow) with a known 
initial charge, what is the equilibrium species profile?

Consider a closed system...
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⇥�i

⇥t
= �⇥ · ni + si

�ni

�r
= 0

ni = �ivr + ji,r = 0 ji,r = Ji,r = 0

Species equations:

GMS Equations:

The generalized diffusion driving force:

di =
n�1X

j=1

�ijrxj +
1

ctRT
(⇥i � ⇤i)rp� ⇤i�

ctRT

 
fi �

nX

k=1

⇤kfk

!

di =
nX

j=1

xiJj � xjJi

cDij
= 0

steady, 1D, 
no reaction

For an ideal gas mixture,  φi = xi,  and Γij = δij.

We don’t know dp/dr or xi0 
(composition at r = 0).

0 =
n�1X

j=1

�ij
dxj

dr
+

1

ctRT
(⇥i � ⇤i)

dp

dr
� ⇤i�

ctRT

 
⇥2r �

nX

k=1

⇤k⇥
2r

!

n�1X

j=1

�ij
dxj

dr
=

1

ctRT
(⇤i � ⇥i)

dp

dr

dxi

dr
=

1

ctRT
(�i � xi)

dp

dr
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For species i,

Species mole balance:

Z rL

0
p xi r dr = p

⇤
x

⇤
i
r

2
L

2
Must know p(r) and 

xi(r) to integrate this.

Momentum:

at steady state 
(no flow):

dp

dr
= �

nX

i=1

⇥ifr,i = ��2r

⇤�v
⇤t

= �⇥ · (�vv)�⇥ · ⌧ �⇥p + �
nX

i=1

⇥ifi

We don’t know p0
(pressure at r = 0).

Species mole balance constrains the species profile solution
(dictates the species boundary condition)

The momentum equation 
gives the pressure profile, 

but is coupled to the species 
equations through M.dp

dr
= ��2r =

pM

RT
�2r

Z rL

0
cxi2�r dr =

Z rL

0
c⇤x⇤

i 2�r dr

dxi

dr
=

1

ctRT
(�i � xi)

dp

dr

* indicates the 
initial condition 
(pure stream).
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* indicates the initial condition (pure stream).

c =
p

RT

Total mole balance (at equilibrium):

Substitute p(r) and solve this for p0...

Z

V
cdV =

Z

V
c⇤ dV

Z rL

0
cr dr = c⇤

r2
L

2
Z rL

0
pr dr = p⇤

r2
L

2

dV = L2�rdr

Total mole balance constrains the pressure solution
(dictates the pressure boundary condition)

dxi

dr
=

M

RT
(�i � xi)�2rSolve these 

equations:

With these 
constraints:

Z rL

0
pr dr = p⇤

r2
L

2

Z rL

0
p xi r dr = p

⇤
x

⇤
i
r

2
L

2

Option A:
1. Guess xi0, p0.
2. Numerically solve the ODEs for xi, p.
3. Are the constraints met?  If not, 

return to step 1.

Option B:
Try to simplify the problem 
by making approximations.

dp

dr
= ��2r =

pM

RT
�2r Note: M couples all of the 

equations together and 
makes them nonlinear.

Note: for tips on solving ODEs numerically in Matlab, see my wiki page.
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Approximation Level 1
• Approximate M as constant, (MO2+MN2)/2, for 

the pressure equation only.  This decouples the 
pressure solution from the species and gives an 
easy analytic solution for pressure profile.

• Solve species equations numerically, given the 
analytic pressure profile.

Example: separation of Air into N2, O2.

Approximation Level 2
• Approximate M as constant, 

(MO2+MN2)/2, for the species 
and pressure equations.  

• Obtain a fully analytic solution 
for both species and pressure.

• Centrifuge diameter: 20 cm • Air initially at STP

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

r (m)

O
2 M

ol
e 

Fr
ac

tio
n

 

 

numeric
approximate 1
approximate 2

1,000 RPM

50,000 RPM

100,000 RPM

500,000 RPM

0 0.02 0.04 0.06 0.08 0.1

1e−4

1e−2

1

1e1

r (m)

p 
(a

tm
)

 

 

fully numeric
constant M

50,000 RPM

1000 RPM

100,000 RPM

150,000 RPM
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Fick’s Law (revisited)

Ignoring thermal diffusion,

How do we interpret each term?
When is each term important?

Notes:  [D]=[B]-1[Γ]

In the binary case:  D11=Γ11Ð12

For ideal mixtures:  [Γ]=[I] 

di = �
n⇤

j=1

xixj

⇥Dij

�
ji
⇤i
� jj

⇤j

⇥
�⇥ lnT

n⇤

j=1

xixj�
T
ij

= �
n⇤

j=1

xjJi � xiJj

cDij
�⇥ lnT

n⇤

j=1

xixj�
T
ij J = �c[B]�1(d)�⇥ lnT (DT )

This is the same [B] matrix as 
before (T&K eq. 2.1.21-2.1.22)

di =
n�1⇤

j=1

�ij⇥xj +
1

ctRT
(⇥i � ⇤i)⇥p� �i

ctRT

�
fi �

n⇤

k=1

⇤kfk

⇥

(J) = �c[B]�1[�](⇥x)⇤ ⇥� ⌅
1

� ⇥p

RT
[B]�1 ((⇥)� (⇤))

⇤ ⇥� ⌅
2

� �

RT
[B]�1[⇤] ((f)� [⇤](f + fn))

⇤ ⇥� ⌅
3
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Review:
Where we are, where we’re going…
Accomplishments
• Defined “reference velocities” and 

“diffusion fluxes”

• Governing equations for 
multicomponent, reacting flow.
‣mass-averaged velocity…

• Established a rigorous way to 
compute the diffusive fluxes from 
first principles.
‣Can handle diffusion in systems of 

arbitrary complexity, including:
‣ nonideal mixtures, EM fields, large pressure 

& temperature gradients, multiple species, 
chemical reaction, etc.

• Simplifications for ideal mixtures, 
negligible pressure gradients, etc.

• Solutions for “simple” problems.

Still Missing:
• Models for binary diffusivities.
‣Given a model, we are good to go!

Roadmap:
• Models for binary diffusivities. 

(T&K Chapter 4) - we won’t 
cover this...

• Simplified models for 
multicomponent diffusion

• Interphase mass transfer (surface 
discontinuities)

• Turbulence - models for diffusion 
in turbulent flow.

• Combined heat, mass, momentum 
transfer.
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