Fick's Second Law

CHEN 6603

Fick's 2nd Law

Mass Form

$$
\frac{\partial(\rho)}{\partial t}=-\nabla \cdot(\mathbf{n})=-\nabla \cdot \mathbf{v}(\rho)-\nabla \cdot(\mathbf{j})
$$

Assume ρ_{t} is constant

$$
\begin{gathered}
\frac{\partial(\omega)}{\partial t}=-\nabla \cdot \mathbf{v}(\omega)-\frac{1}{\rho_{t}} \nabla \cdot(\mathbf{j}) \\
(\mathbf{j})=-\rho_{t}\left[D^{o}\right](\nabla \omega)
\end{gathered}
$$

Assume no reaction

$$
\frac{\partial(\omega)}{\partial t}+\nabla \cdot \mathbf{v}(\omega)=\nabla \cdot\left[D^{o}\right](\nabla \omega)
$$

$$
\text { Assume }\left[D^{\circ}\right] \text { is constant }
$$

$$
\frac{\partial(\omega)}{\partial t}+\nabla \cdot \mathbf{v}(\omega)=\left[D^{o}\right]\left(\nabla^{2} \omega\right)
$$

Molar Form

$$
\frac{\partial(c)}{\partial t}=-\overline{\nabla \cdot(\mathbf{N})=-\nabla \cdot \mathbf{u}(c)-\nabla \cdot(\mathbf{J}), ~}
$$

Assume c_{t} is constant

$$
\frac{\partial(x)}{\partial t}=-\nabla \cdot \mathbf{u}(x)-\frac{1}{c_{t}} \nabla \cdot(\mathbf{J})
$$

$$
(\mathbf{J})=-c_{t}[D](\nabla x)
$$

$$
\frac{\partial(x)}{\partial t}+\nabla \cdot \mathbf{u}(x)=\nabla \cdot[D](\nabla x)
$$

Assume $[D]$ is constant

$$
\frac{\partial(x)}{\partial t}+\nabla \cdot \mathbf{u}(x)=[D]\left(\nabla^{2} x\right)
$$

- Does this describe multicomponent effects?
- When is it reasonable to assume that $[D]$ is constant?

Scaling \& Fick's Second Law

$$
\frac{\partial(x)}{\partial t}+\nabla \cdot \mathbf{u}(x)=[D]\left(\nabla^{2} x\right)
$$

Non-dimensionalization: we have length scale, time scale, and D.

$$
\begin{aligned}
t^{*} & =\frac{t}{\tau} & \text { Dimensionless time } & \\
\mathbf{x}^{*} & =\frac{\mathbf{x}}{\ell} & \text { Dimensionless space } & \text { If } D^{*}=1 \text { then } \tau=\frac{\ell^{2}}{D} \\
D^{*} & =D \frac{\tau}{\ell^{2}} & \text { Dimensionless diffusivity } &
\end{aligned}
$$

- Given D, we can estimate how long it will require for a species to diffuse distance ℓ.
- Given D, we can estimate how far the diffusion boundary layer will reach in time τ.
- If we measure the time that it takes to detect a species that diffuses some distance ℓ through a pure fluid, we can estimate the binary diffusion coefficient for that species in that fluid at the given temperature and pressure.

Diffusion Equations

$$
\text { "Generic" simplified form: } \quad \frac{\partial \phi}{\partial t}+\nabla \cdot \mathbf{v} \phi=D_{\phi} \nabla^{2} \phi
$$

Temperature (Fourier's Law of Conduction)

- constant properties
- No heat released by chemical reactions
- low Mach numbers (negligible viscous heating)
- No species diffusion
- Pressure is steady.

Velocity (Newton's Law of Viscosity)

- constant properties
- pressure \& density are constant
- no body forces

Species (Fick's $2^{\text {nd }}$ Law)

- Constant properties
- Pressure is constant
- Body forces act equally
- No reaction.
- No thermal diffusion (Soret effect)

$$
\begin{aligned}
& \frac{\partial T}{\partial t}+\nabla \cdot \mathbf{v} T=\frac{k}{\rho c_{p}} \nabla^{2} T \\
& \frac{\partial T}{\partial t}=\frac{k}{\rho c_{p}} \nabla^{2} T
\end{aligned}
$$

$$
\frac{\partial \mathbf{v}}{\partial t}+\nabla \cdot(\mathbf{v v})=\frac{\mu}{\rho} \nabla^{2} \mathbf{v}
$$

Note: the form without the convective term is meaningless in the case of momentum.

$$
\begin{aligned}
& \frac{\partial(x)}{\partial t}+\nabla \cdot \mathbf{u}(x)=[D]\left(\nabla^{2} x\right) \\
& \frac{\partial(x)}{\partial t}=[D]\left(\nabla^{2} x\right)
\end{aligned}
$$

Example: 2 Bulb Problem
 (Equimolar Counterdiffusion)

Assume:

- T, p are constant
- No reaction
- I-D domain $z=[0, L]$
- Compositions are constant at

- Ideal gas behavior.

Molar reference frame is most convenient, because $u_{z}=$ constant for an ideal gas mixture
in ID. (we can also deduce that $u_{z}=0$)

$$
\frac{\partial c_{t}}{\partial t}=-\nabla \cdot c_{t} \mathbf{u}+\sum_{i=1}^{n} \frac{s_{i}}{M_{i}} \quad c_{t}=\bar{V}^{-1}=\frac{P}{R T}
$$

At "steady state," $[D]\left(\nabla^{2} x\right)=0$,

Equations are decoupled because diffusive fluxes are constant.

$$
\begin{aligned}
(J) & =-c_{t}[D]\left(\frac{\partial x}{\partial z}\right) \\
& =-\frac{c_{t}}{L}[D]\left(x_{L}-x_{0}\right)
\end{aligned}
$$

$\begin{aligned} \begin{array}{l}\text { Diffusive fluxes can } \\ \text { be calculated using: }\end{array} & =-c_{t}[D]\left(\frac{\partial x}{\partial z}\right), \\ & =-\frac{c_{t}}{L}[D]\left(x_{L}-x_{0}\right) .\end{aligned}$

Example - Balance on "Bulbs"

Assume:

- T, p are constant
- No reaction
- I-D domain $z=[0, L]$
- Each bulb is well-mixed (no spatial gradients)
- Ideal gas behavior

- @ $t=0$, each bulb has a known composition.
- @ $t=\infty$, we can determine the composition (equilibrium).
- Can we determine the composition in each bulb as a function of time?

$$
c_{t} \frac{\partial x_{i}}{\partial t}=-\nabla \cdot \mathbf{N}_{i} \longleftarrow r^{\begin{array}{c}
\text { What assumptions } \\
\text { have been made? }
\end{array}}
$$

Mole balance on a bulb: $\left.\quad \int_{\mathrm{V}} c_{t} \frac{\partial x_{i}}{\partial t} \mathrm{~d} \mathrm{~V}=-\int_{\mathrm{S}} \mathbf{N}_{i} \cdot \mathbf{a d S}\right)$?

$$
c_{t} \vee \frac{\partial x_{i}}{\partial t}=-\mathbf{N}_{i} A=-\mathbf{J}_{i} A \quad(\text { because } \mathbf{u}=0)
$$

For the bulb at $z=0$:

$$
\begin{aligned}
c_{t} V_{0} \frac{\mathrm{~d} x_{i}^{0}}{\mathrm{~d} t} & =-\mathbf{J}_{i} A \\
V_{0} \frac{\mathrm{~d} x_{i}^{0}}{\mathrm{~d} t} & =A \sum_{j=1}^{n-1} D_{i j} \frac{x_{j}^{L}-x_{j}^{0}}{L} \\
\frac{\mathrm{~d}\left(x^{0}\right)}{\mathrm{d} t} & =\frac{A}{L V_{0}}[D]\left(\left(x^{L}\right)-\left(x^{0}\right)\right)
\end{aligned}
$$

Recall from our previous discussion (Fick's second law):

$$
\begin{aligned}
& (x)=\frac{\left(x^{L}\right)-\left(x^{0}\right)}{L} z+\left(x^{0}\right) \\
& (J)=-\frac{c_{t}}{L}[D]\left(x^{L}-x^{0}\right) .
\end{aligned}
$$

What were the assumptions?

Use equilibrium balance to eliminate $\left(x^{L}\right): \quad V_{0} x_{i}^{0}+V_{L} x_{i}^{L}=\left(V_{0}+V_{L}\right) x_{i}^{\infty}$, (assume tube has "negligible" volume)

$$
\begin{array}{rlr}
\frac{\mathrm{d}\left(x^{0}\right)}{\mathrm{d} t} & =\frac{A}{L V_{0}}\left(1+\frac{V_{0}}{V_{L}}\right)[D]\left(\left(x^{\infty}\right)-\left(x^{0}\right)\right) & \begin{array}{c}
\text { Must solve this (coupled) } \\
\text { system of ODEs for the } \\
\text { change in the composition }
\end{array} \\
& =\beta[D]\left(\left(x^{\infty}\right)-\left(x^{0}\right)\right), & \begin{array}{l}
\text { in bulb } 0 \text { in time. }
\end{array}
\end{array}
$$

$$
\beta \equiv \frac{A}{L V_{0}}\left(1+\frac{V_{0}}{V_{L}}\right) \quad \begin{gathered}
\text { Constant for a } \\
\text { given geometry }
\end{gathered}
$$

Solution Strategy

$$
\frac{\mathrm{d}\left(x^{0}\right)}{\mathrm{d} t}=\beta[D]\left(\left(x^{\infty}\right)-\left(x^{0}\right)\right)
$$

Solution Options:

- Solve this as a system of coupled ODEs.
- Make some assumptions to decouple the system.
- note: we have already made some assumptions to get the ODEs and the expression for (J).

Heat Transfer Analogy

From before:

$$
\frac{\partial T}{\partial t}+\nabla \cdot \mathbf{v} T=\frac{k}{\rho c_{p}} \nabla^{2} T
$$

Steady state, $\mathbf{v}=0$:

$$
\frac{\mathrm{d}^{2} T}{\mathrm{~d} z^{2}}=0
$$

Temperature solution:

Heat flux:

$$
\begin{aligned}
T & =\frac{T_{L}-T_{0}}{L} z+T_{0} \\
q & =-k \frac{\mathrm{~d} T}{\mathrm{~d} z}=-\frac{k}{L}\left(T_{L}-T_{0}\right)
\end{aligned}
$$

$$
(x)=\frac{\left(x_{L}\right)-\left(x_{0}\right)}{L} z+\left(x_{0}\right)
$$

$$
(J)=-\frac{c_{t}}{L}[D]\left(x_{L}-x_{0}\right)
$$

$$
\mathrm{Le}_{i j}=\frac{k}{\rho c_{p} D_{i j}} \quad \begin{aligned}
& \text { If we know } \mathrm{Le}, \rho, k, c_{p} \text {, we } \\
& \text { can find } D_{\mathrm{ij}} . \text { More later. }
\end{aligned}
$$

