Fluxes in Multicomponent Systems

ChEn 6603

Taylor & Krishna §1.1-1.2

Saturday, January 7, 12

Outline

Reference velocities

<u>Types of fluxes</u> (total, convective, diffusive)

- <u>Total fluxes</u>
- Diffusive Fluxes

Example

Conversion between diffusive fluxes

T&K Table 1.2

Reference Velocities

Denote the velocity of	component i as \mathbf{u}_i .
------------------------	-----------------------------------

"Molar-Averaged" velocity

$$\mathbf{u} = \sum_{i=1}^{n} x_i \mathbf{u}_i$$

What assumptions have we made here?

 x_i is the mole fraction of component *i*.

"Mass-A	veraged"	ve	locity
---------	----------	----	--------

$$\mathbf{v} = \sum_{i=1}^{n} \omega_i \mathbf{u}_i$$

 ω_i is the mass fraction of component *i*.

"Volume-Averaged" velocity $\mathbf{u}^V = \sum_{i=1}^n \phi_i \mathbf{u}_i$ $\phi_i \equiv c_i \overline{V}_i$ is the volume fraction of component *i*. $c_i = x_i c = \rho_i / M_i$ - molar concentration of *i*. \overline{V}_i - partial molar volume of component *i* (EOS).

Arbitrary reference velocity

$$\mathbf{u}^a = \sum_{i=1}^n a_i \mathbf{u}_i$$

 $\sum a_i = 1$ a_i is an arbitrary weighting factor.

Why $\sum a_i = 1$?

How do we define a_i such that $\mathbf{u}^a = \mathbf{u}_j$?

Types of Fluxes

🖗 Total Flux

• Amount of a quantity passing through a unit surface area per unit time.

Convective Flux:

• Amount of a quantity passing through a unit surface area per unit time that is carried by some reference velocity.

Diffusive Flux:

- Amount of a quantity passing through a unit surface area per unit time due to diffusion.
- The difference between the Total Flux and the Convective Flux.
- Cannot be defined independently of the total & convective fluxes!

Total Fluxes

Total Fluxes may be written in terms of a component's velocity and specific density

<u>Molar Flux</u> of component *i*:

$$\mathbf{N}_i \equiv x_i c \mathbf{u}_i \\ = c_i \mathbf{u}_i$$

Saturday, January 7, 12

Total Molar Flux:

$$N_{t} = \sum_{i=1}^{n} N_{i}$$

$$= \sum_{i=1}^{n} c_{i} \mathbf{u}_{i}$$

$$= c \mathbf{u}$$
Note: there is a typo in T&K eq. (1.2.5)

Diffusive Fluxes

Concepts:

- The total flux is partitioned into a convective and diffusive flux.
- The convective flux is defined in terms of an average velocity.
- The diffusive flux is defined as the difference between the total and convective fluxes. It is only defined once we have chosen a convective flux!

Diffusive Fluxes

Diffusion fluxes are defined as motion relative to some reference velocity.

(Diffusion flux) = (Total Flux) - (convective flux)

Diffusion Flux	Total Flux	Convective Flux	Comments
\mathbf{j}_i	\mathbf{n}_i	$ ho_i {f v}$	Mass diffusive flux relative to a mass-averaged velocity
\mathbf{j}_{i}^{u}	\mathbf{n}_i	$ ho_i {f u}$	Mass diffusive flux relative to a molar-averaged velocity
${f J}_i$	\mathbf{N}_i	$c_i \mathbf{u}$	Molar diffusive flux relative to a molar-averaged velocity
\mathbf{J}_{i}^{v}	\mathbf{N}_i	$c_i \mathbf{v}$	Molar diffusive flux relative to a mass-averaged velocity

 $\mathbf{j}_i = \mathbf{n}_i - \rho_i \mathbf{v}$ $= \rho_i (\mathbf{u}_i - \mathbf{v})$ $= \mathbf{n}_i - \omega_i \mathbf{n}_t$

$$\mathbf{J}_i = \mathbf{N}_i - c_i \mathbf{u}$$
$$= c_i (\mathbf{u}_i - \mathbf{u})$$
$$= \mathbf{N}_i - x_i \mathbf{N}_t$$

T&K Table 1.3

Linear Dependence of Diffusive Fluxes

- Appropriately weighted diffusive fluxes sum to zero. Why?
- Fotal fluxes are all independent.
- Convective fluxes are not all independent.

For mass diffusive flux relative $\sum_{i=1}^{n} \mathbf{j}_i = 0$ to mass-averaged velocity:

From the previous slide: $\mathbf{j}_i = \rho_i \left(\mathbf{u}_i - \mathbf{v} \right)$

$$\sum_{i=1}^{n} \mathbf{j}_{i} = \sum_{i=1}^{n} (\rho_{i} \mathbf{u}_{i} - \rho_{i} \mathbf{v})$$
$$= \rho \sum_{i=1}^{n} (\omega_{i} \mathbf{u}_{i} - \omega_{i} \mathbf{v}),$$
$$= -\rho \mathbf{v} + \rho \sum_{i=1}^{n} \omega_{i} \mathbf{u}_{i}$$
$$= -\rho \mathbf{v} + \rho \mathbf{v},$$
$$= 0.$$

$$\begin{array}{ll} \mathbf{.3} & \sum_{i=1}^{n} \frac{\omega_i}{x_i} \mathbf{J}_i^v = 0 \\ \mathbf{t} & i = 1 \end{array}$$

Example - Stefan Tube

Saturday, January 7, 12

Conversion Between Fluxes

We can convert between various diffusive fluxes via linear transformations.

Conversion between mass diffusive fluxes relative to mass and molar reference velocities.

 $\sum_{i=1}^{n} \mathbf{j}_{i}^{u} = \sum_{i=1}^{n} \rho_{i} \mathbf{u}_{i} - \sum_{i=1}^{n} \rho_{i} \mathbf{u},$

 $= \rho \mathbf{v} - \rho \mathbf{u},$

$$(\mathbf{j}^{u}) = [B^{uo}](\mathbf{j})$$
$$(\mathbf{j}) = [B^{ou}](\mathbf{j}^{u})$$

To form $[B^{uo}]^{-1}$ this must be an n-1dimensional system of equations! (why?)

Derivation of $[B^{ou}]$...

 $\frac{1}{\rho} \sum_{i=1}^{n} \mathbf{j}_{i}^{u} = \mathbf{v} - \mathbf{u}.$

 $\mathbf{j}_i^u = \rho_i(\mathbf{u}_i - \mathbf{u})$

$$\mathbf{j}_i = \rho_i(\mathbf{u}_i - \mathbf{v})$$

Let's try to get a \mathbf{j}_i^u on the RHS \Rightarrow add & subtract $\rho_i \mathbf{u}$.

$$\mathbf{j}_{i} = \rho_{i}(\mathbf{u}_{i} - \mathbf{v}),$$

= $\rho_{i}(\mathbf{u}_{i} - \mathbf{u}) + \rho_{i}(\mathbf{u} - \mathbf{v})$
 \mathbf{j}_{i}^{u}

 $\mathbf{j}_i = \mathbf{j}_i^u - \omega_i \sum \mathbf{j}_j^u$

This is an n-dimensional set of equations. If we derive $[B^{ou}]$ from this, it will not be full-rank.

Derivation of $[B^{ou}]$ (cont'd)

$$\mathbf{j}_{i} = \mathbf{j}_{i}^{u} - \omega_{i} \sum_{j=1}^{n-1} \left[-\frac{\omega_{n}}{x_{n}} \frac{x_{j}}{\omega_{j}} \mathbf{j}_{j}^{u} + \mathbf{j}_{j}^{u} \right],$$

$$= \sum_{j=1}^{n-1} \left[\delta_{ij} - \omega_{i} \left(1 - \frac{\omega_{n}}{x_{n}} \frac{x_{j}}{\omega_{j}} \right) \right] \mathbf{j}_{j}^{u} \quad \text{we have } n\text{-1 of these equations } (i=1...n\text{-1})$$

$$(\mathbf{j}) = [B^{ou}](\mathbf{j}^u)$$
$$B_{ij}^{ou} = \delta_{ij} - \omega_i \left(1 - \frac{\omega_n}{x_n} \frac{x_j}{\omega_j}\right)$$

 $\delta_{ij} - \omega_i \left(1 - \frac{n}{x_n} \frac{J}{\omega_j} \right)$

 $\begin{array}{l} \underbrace{x_{j}}{v_{j}} \\ \end{array} \right) \\ (note the typo in A.3.23 in T&K) \\ (note the typo in A.3.22). \\ B^{-1} = [A]^{-1} - \frac{1}{\alpha} [A]^{-1} (u) (v)^{\mathsf{T}} [A]^{-1}, \\ \alpha = 1 + (v)^{\mathsf{T}} [A]^{-1} (u) \end{array}$

The inverse $[B^{uo}] = [B^{ou}]^{-1}$ can be obtained