The Maxwell-Stefan Equations

ChEn 6603

Outline

Diffusion in "ideal", binary systems

- Particle dynamics
- Maxwell-Stefan equations
- Fick's Law
© Diffusion in "ideal" multicomponent systems
- Example: Stefan tube
- Matrix form of the Maxwell-Stefan equations
- Fick's Law for multicomponent systems
- Reference velocities again

Particle Dynamics

Conservation of momentum:

$$
m_{1}\left(\mathbf{u}_{1}-\mathbf{u}_{f 1}\right)+m_{2}\left(\mathbf{u}_{2}-\mathbf{u}_{f 2}\right)=0
$$

Conservation of kinetic energy (elastic collision):

$$
m_{1}\left(\mathbf{u}_{1}^{2}-\mathbf{u}_{f 1}^{2}\right)+m_{2}\left(\mathbf{u}_{2}^{2}-\mathbf{u}_{f 2}^{2}\right)=0
$$

For molecules, inelastic collisions are known by another name ... what is it?

Solve for final particle velocities:
Momentum exchanged in a collision:

$$
\begin{aligned}
& \mathbf{u}_{f 1}=\frac{\mathbf{u}_{1}\left(m_{1}-m_{2}\right)+2 m_{2} \mathbf{u}_{2}}{m_{1}+m_{2}}, \\
& \mathbf{u}_{f 2}=\frac{m_{1}\left(\mathbf{u}_{1}-\mathbf{u}_{f 1}\right)}{}=\frac{m_{1} \mathbf{u}_{1}-\frac{m_{1}}{m_{1}+m_{2}}\left(\mathbf{u}_{1}\left(m_{1}-m_{2}\right)+2 m_{2} \mathbf{u}_{2}\right)}{m_{1}+m_{2}}=\frac{2 m_{1} m_{2}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)}{m_{1}+m_{2}}
\end{aligned}
$$

Sum of forces acting on particles of type

 " 1 " per unit volume> Rate of change of momentum of particles of type " 1 " per unit volume

Momentum
exchanged per collision between
" 1 " and " 2 "

Rate of 1-2
\times collisions per unit volume

$$
\mathbf{u}_{1}-\mathbf{u}_{2} \quad x_{1} x_{2}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Momentum } \\
\text { exchanged per } \\
\text { collision between } \\
\text { " } 1 \text { " and " } 2 \text { " }
\end{array} \\
\begin{array}{c}
\text { Rate of 1-2 } \\
\text { collisions per } \\
\text { unit volume }
\end{array} \\
=-\int_{\mathrm{V}(t)} p \nabla x_{1} \mathrm{dV} \\
\text { Why the }(-) \text { sign? }
\end{gathered}
$$

Assume:

- System pressure is constant
- Collisions are purely elastic (kinetic energy is conserved in collisions)
- No shear stress (negligible velocity gradients)

So our force (momentum) balance becomes:

$$
\begin{aligned}
-p \nabla x_{1} & \propto x_{1} x_{2}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \\
& =f_{12} x_{1} x_{2}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)
\end{aligned}
$$

f_{12} : drag coefficient for drag that particle " 1 " feels as a result of interactions with particles of type " 2 "

Define a "binary diffusion coefficient" as $\Xi_{12}=\frac{p}{f_{12}}$

> What is the binary
> diffusivity a function of?

What about ∇x_{2} ?

Fick’s Law - Binary Ideal System

$$
\nabla x_{1}=-\frac{x_{1} x_{2}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)}{Ð_{12}}
$$

Maxwell-Stefan equations for a binary, ideal system at constant pressure.

$$
\begin{aligned}
\nabla x_{1} & =-\frac{x_{2} \mathbf{N}_{1}-x_{1} \mathbf{N}_{2}}{c_{t} Ð_{12}} \\
& =-\frac{x_{2} \mathbf{J}_{1}-x_{1} \mathbf{J}_{2}}{c_{t} Ð_{12}} \\
\nabla x_{1} & =-\frac{\mathbf{J}_{1}}{c_{t} Ð_{12}}
\end{aligned}
$$

$\mathbf{J}_{1}=-c_{t} Ð_{12} \nabla x_{1}$
Fick's law for a binary, ideal system at constant pressure

Re-Cap

$\not{ }_{12}$ can be interpreted as an inverse drag coefficient.
$\not Ð_{12}=Ð_{21}$ (symmetric due to momentum conservation)
${ }_{12}$ depends on the characteristics of species 1 and 2 (molecule shapes, etc.), but not on their relative compositions.
$\not{ }_{12}$ may depend on temperature and pressure.
We call \emptyset_{12} the "Maxwell-Stefan" diffusivity or "Binary" diffusivity.
\notin There are no " $1-1$ " interactions here $-\bigoplus_{11}$ is not defined.

T\&K §2.I.3-2. I. 4

Binary system: $\quad \nabla x_{1}=-\frac{x_{1} x_{2}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)}{D_{12}}$
Ternary system: must consider 1-2, 1-3, and 2-3 interactions.

$$
\begin{aligned}
& \nabla x_{1}=-\frac{x_{1} x_{2}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)}{Ð_{12}}-\frac{x_{1} x_{3}\left(\mathbf{u}_{1}-\mathbf{u}_{3}\right)}{Ð_{13}} \\
& \nabla x_{2}=-\frac{x_{1} x_{2}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right)}{D_{12}}-\frac{x_{2} x_{3}\left(\mathbf{u}_{2}-\mathbf{u}_{3}\right)}{Ð_{23}}
\end{aligned}
$$

Multicomponent system: must consider $i-j$ interactions.

$$
\begin{aligned}
& \nabla x_{i}=-\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{i} x_{j}\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)}{Đ_{i j}} \quad \text { in general... } \quad \mathbf{d}_{i}=-\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{i} x_{j}\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)}{Đ_{i j}} \quad \text { What about } i=j \text { ? } \\
& \text { Recall: } \quad \mathbf{N}_{i}=x_{i} c \mathbf{u}_{i} \quad \mathbf{J}_{i}=\mathbf{N}_{i}-x_{i} c \mathbf{u} \\
& \mathbf{d}_{i}=\nabla x_{i} \\
& \text { (so far) } \\
& \mathbf{d}_{i}=-\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{N}_{i}-x_{i} \mathbf{N}_{j}}{c \Xi_{i j}}, \\
& =-\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{J}_{i}-x_{i} \mathbf{J}_{j}}{c \Xi_{i j}} \\
& \text { Assumptions: } \\
& \text { - Constant Pressure } \\
& \text { - Ideal mixture (elastic collisions) } \\
& \text { - Conservation of translational energy. } \\
& \text { - Where else could the energy go? }
\end{aligned}
$$

Example: Stefan Tube

Given: $\bigoplus_{i j}, x_{i}(z=0), x_{i}(z=\ell)$,

$$
\ell=0.238 \mathrm{~m}, T=328.5 \mathrm{~K}
$$

Find $x_{i}(z)$
Acetone (1), Methanol (2), Air (3)

$$
x_{1}(\mathrm{z}=0)=0.319, x_{2}(\mathrm{z}=0)=0.528
$$

$$
Đ_{12}=8.48 \mathrm{~mm}^{2} / \mathrm{s}
$$

$$
Đ_{13}=13.72 \mathrm{~mm}^{2} / \mathrm{s}
$$

$$
Đ_{23}=19.91 \mathrm{~mm}^{2} / \mathrm{s}
$$

Species balance equations (no reaction):

$$
\begin{aligned}
\frac{\partial \rho \omega_{i}}{\partial t} & =\frac{\partial \rho_{i}}{\partial t}=-\nabla \cdot \mathbf{n}_{i} \\
\frac{\partial c x_{i}}{\partial t} & =\frac{\partial c_{i}}{\partial t}=-\nabla \cdot \mathbf{N}_{i}
\end{aligned}
$$

At steady state (ID),

$$
\begin{array}{rlr}
\mathbf{n}_{i} & =\alpha_{i} & \text { Convection- } \\
\mathbf{N}_{i} & =\beta_{i} & \text { diffusion balance... }
\end{array}
$$

From the Maxwell-Stefan equations:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} z}=-\sum_{j \neq i}^{n} \frac{x_{j} N_{i}-x_{i} N_{j}}{c_{t} Đ_{i j}}
$$

A semi-analytic solution

$\underset{\text { Equations }}{\text { Maxwell-Stefan }} \quad \frac{\mathrm{d} x_{i}}{\mathrm{~d} z}=-\sum_{j \neq i}^{n} \frac{x_{j} N_{i}-x_{i} N_{j}}{c_{t} Đ_{i j}} \quad \begin{aligned} & \text { Normalized } \\ & \text { coordinate: }\end{aligned} \eta \equiv \frac{z}{\ell}, \quad \frac{\mathrm{~d}}{\mathrm{~d} z}=\frac{\mathrm{d}}{\mathrm{d} \eta} \frac{\mathrm{d} \eta}{\mathrm{d} z}=\frac{1}{\ell} \frac{\mathrm{~d}}{\mathrm{~d} \eta}$

$$
\begin{aligned}
\frac{1}{\ell} \frac{\mathrm{~d} x_{i}}{\mathrm{~d} \eta} & =\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{i} N_{j}-x_{j} N_{i}}{c_{t} \exists_{i j}}, \quad \begin{array}{c}
\text { We need to eliminate } x_{n} \text { from the equation } \\
\text { so that we have unknowns } x_{1} \ldots x_{n-1} .
\end{array} \\
& =x_{i} \sum_{j \neq i}^{n} \frac{N_{j}}{c_{t} \exists_{i j}}-\frac{x_{n} N_{i}}{c_{t} \Xi_{i n}}-\sum_{j \neq i}^{n-1} \frac{x_{j} N_{i}}{c_{t} Ð_{i j}} \quad \begin{array}{c}
\text { Eliminate } x_{n} \text { by } \\
\text { substituting: }
\end{array} x_{n}=1-\sum_{j=1}^{n-1} x_{j}=1-x_{i}-\sum_{j \neq i}^{n-1} x_{j}
\end{aligned}
$$

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} \eta}=\underbrace{\left(\frac{N_{i}}{c_{t} Đ_{i n} / \ell}+\sum_{j \neq i}^{n} \frac{N_{j}}{c_{t} Đ_{i j} / \ell}\right)}_{\Phi_{i i}} x_{i}+\sum_{j \neq i}^{n-1} \underbrace{\left(\frac{N_{i}}{c_{t} \boxplus_{i n} / \ell}-\frac{N_{i}}{c_{t} Đ_{i j} / \ell}\right)}_{\Phi_{i j}} x_{j} \underbrace{-\frac{N_{i}}{c_{t} Đ_{i n} / \ell}}_{\phi_{i}}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} x_{i}}{\mathrm{~d} \eta}=\underbrace{\left(\frac{N_{i}}{c_{t} Ð_{i n} / \ell}+\sum_{j \neq i}^{n} \frac{N_{j}}{c_{t} Ð_{i j} / \ell}\right)}_{\Phi_{i i}} x_{i}+\sum_{j \neq i}^{n-1} \underbrace{\left(\frac{N_{i}}{c_{t} Ð_{i n} / \ell}-\frac{N_{i}}{c_{t} Ð_{i j} / \ell}\right)}_{\Phi_{i j}} x_{j} \underbrace{\frac{N_{i}}{c_{t} Ð_{i n} / \ell}}_{\phi_{i}} \\
& \frac{\mathrm{~d}(x)}{\mathrm{d} \eta}=[\Phi](x)+(\phi) \\
& \Phi_{i i}=\frac{N_{i}}{c_{t} Đ_{i n} / \ell}+\sum_{k \neq i}^{n} \frac{N_{k}}{c_{t} Đ_{i k} / \ell}, \\
& \text { A system of linear ODEs } \\
& \text { with constant coefficients } \\
& \Phi_{i j}=N_{i}\left(\frac{1}{c_{t} Đ_{i n} / \ell}-\frac{1}{c_{t} \Xi_{i j} / \ell}\right), \\
& \text { (} c_{t}, N_{j} \text { are constant) } \\
& \phi_{i}=-\frac{N_{i}}{c_{t} Đ_{i n} / \ell}
\end{aligned}
$$

Analytic solution (assuming N_{i} are all constant) see T\&K §8.3 and Appendix B

Algorithm:

I. Guess N_{i}
2. Calculate $[\Phi],(\phi)$
3. Calculate (x) at $\eta=1(z=\ell)$
4. If $\left(x_{e}\right)$ matches the known boundary condition, we are done. Otherwise return to step I.

Note: we could also solve the equations numerically in step 3 and eliminate step 2 (work straight from the original Maxwell-Stefan equations)

T\&K §2.I. 5

Matrix Form of Maxwell-Stefan Equations

$\mathbf{d}_{i}=-\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{N}_{i}-x_{i} \mathbf{N}_{j}}{c D_{i j}}$

$$
=-\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{J}_{i}-x_{i} \mathbf{J}_{j}}{c Ð_{i j}}
$$

$\sum_{i=1}^{n} \mathbf{d}_{i}=0$ Easily shown for the case we have addressed thus far, $\mathbf{d}_{i}=\nabla x_{i}$.

Only $n-1$ of these equations are independent.

For a binary system, we have:

$$
\begin{aligned}
& \nabla x_{1}=-\frac{x_{2} \mathbf{N}_{1}-x_{1} \mathbf{N}_{2}}{c_{t} Đ_{12}} \\
& \nabla x_{2}=-\frac{x_{1} \mathbf{N}_{2}-x_{2} \mathbf{N}_{1}}{c_{t} Đ_{21}}
\end{aligned}
$$

Show that these sum to zero.

Eliminate \mathbf{J}_{n} from the set of n equations $\Rightarrow n-1$ equations.

$$
\begin{aligned}
& \begin{aligned}
\mathbf{J}_{n} & =-\sum_{j=1}^{n-1} \mathbf{J}_{j}=-\mathbf{J}_{i}-\sum_{\substack{j=1 \\
j \neq i}}^{n-1} \\
\mathbf{d}_{i} & =-\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{J}_{i}-x_{i} \mathbf{J}_{j}}{c_{t} D_{i j}},
\end{aligned} \\
& c_{t} \mathbf{d}_{i}=-\mathbf{J}_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{j}}{\ni_{i j}}+x_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{\mathbf{J}_{j}}{\ni_{i j}}, \\
& \text { Split the summation } \\
& \text { into individual terms. } \\
& \text { Recall that we don't } \\
& \text { have a } \bigoplus_{i i} \text { term! } \\
& =-\mathbf{J}_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{j}}{D_{i j}}+x_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n-1} \frac{\mathbf{J}_{j}}{D_{i j}}+x_{i} \frac{\mathbf{J}_{n}}{D_{i n}} \text {, } \begin{array}{c}
\text { Isolate the } n^{\text {th }} \\
\text { diffusive flux. }
\end{array} \\
& \underset{n^{\text {h }} \text { diffusive flux }}{\text { eliminated the }}=-\mathbf{J}_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{j}}{D_{i j}}+x_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n-1} \frac{\mathbf{J}_{j}}{D_{i j}}-\frac{x_{i}}{\overline{Q i n}_{i n}}\left(\mathbf{J}_{i}+\sum_{\substack{j=1 \\
j \neq i}}^{n-1} \mathbf{J}_{j}\right),
\end{aligned}
$$

Define diagonal $\underset{\substack{\text { and ofine diagonal } \\ \text { and } \\ \text { matrixiagonal entries. }}}{\substack{\text {. } \\ \text {. }}}=-B_{i i} \mathbf{J}_{i}-\sum_{j \neq i}^{n-1} B_{i j} \mathbf{J}_{j}$

$$
\begin{aligned}
c_{t} \mathbf{d}_{i} & =-\mathbf{J}_{i}\left(\frac{x_{i}}{\ni_{i n}}+\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{x_{j}}{D_{i j}}\right)+x_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n-1}\left(\frac{1}{\Xi_{i j}}-\frac{1}{\ni_{i n}}\right) \mathbf{J}_{j}, \\
& =-B_{i i} \mathbf{J}_{i}-\sum_{j \neq i}^{n-1} B_{i j} \mathbf{J}_{j}
\end{aligned}
$$

n-1 dimensional matrix form:

$$
\begin{aligned}
c_{t}(\mathbf{d})=-[B](\mathbf{J}) \quad B_{i i} & =\frac{x_{i}}{D_{i n}}+\sum_{j \neq i}^{n} \frac{x_{j}}{Đ_{i j}}, \\
B_{i j} & =-x_{i}\left(\frac{1}{D_{i j}}-\frac{1}{Ð_{i n}}\right)
\end{aligned}
$$

$$
c_{t}\left(\begin{array}{c}
\mathbf{d}_{1} \\
\mathbf{d}_{2} \\
\vdots \\
\mathbf{d}_{n-1}
\end{array}\right)=-\left[\begin{array}{llll}
B_{1,1} & B_{1,2} & \cdots & B_{1, n-1} \\
B_{2,1} & B_{2,2} & \cdots & B_{2, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
B_{n-1,1} & B_{n-1,2} & \cdots & B_{n-1, n-1}
\end{array}\right]\left(\begin{array}{c}
\mathbf{J}_{1} \\
\mathbf{J}_{2} \\
\vdots \\
\mathbf{J}_{n-1}
\end{array}\right)
$$

Note: we can write this in n-dimensional form, but then $[B]^{-1}$ cannot be formed.

Fick's Law

$$
\begin{aligned}
& \begin{array}{l}
\text { Maxwell-Stefan Equations } \\
\text { (matrix form) }
\end{array} \\
& \begin{array}{c}
\text { Fick's Law } \\
\text { (matrix form) }
\end{array} \\
& c_{t}(\mathbf{d})=-[B](\mathbf{J}) \quad
\end{aligned} \quad-c_{t}[B]^{-1}(\mathbf{d}) \quad \begin{gathered}
\text { so far, } \\
\\
\\
= \\
\mathbf{d}_{i}=\nabla x_{i} .
\end{gathered}
$$

Some Observations:

\& For an ideal gas mixture, the $\bigoplus_{i j}$ are largely independent of composition (but are functions of T and p), while the $D_{i j}$ are complicated functions of composition.
\% The Fickian diffusion coefficients $\left(D_{i j}\right)$ may be negative, while $\bigoplus_{i j} \geq 0$.
\& The binary diffusivity matrix is symmetric $\left(\bigoplus_{i j}=\bigoplus_{j i}\right)$ but the Fickian diffusivity matrix is not symmetric ($D_{i j} \neq D_{j i}$).
\# Note that $\bigoplus_{i i}$ never enter in to any expression, and have no physical meaning. However, the Fickian $D_{i i}$ enter directly into the expression for the fluxes, and represent the proportionality constant between the driving force and the diffusion flux for the $i^{\text {th }}$ component.
\& $\bigoplus_{i j}$ are independent of reference frame. $D_{i j}$ is for a molar-averaged velocity reference frame.

T\&K §3.2

Binary/Ternary Comparison

$$
\sum_{i=1}^{n} x_{i}=1 \Rightarrow \sum_{i=1}^{n} \nabla x_{i}=0
$$

Binary Diffusion

$$
\nabla x_{2}=-\nabla x_{1}
$$

Ternary Diffusion

$\nabla x_{1}=-\nabla x_{2}-\nabla x_{3}$

Diffusion Regimes

$$
(J)=-c_{t}[D](\nabla x)
$$

Binary Diffusion

$$
\mathbf{J}_{1}=-c_{t} D \nabla x_{1}
$$

$$
\begin{aligned}
\mathbf{J}_{1} & =-c_{t} D_{11} \nabla x_{1}-c_{t} D_{12} \nabla x_{2}, \\
\mathbf{J}_{2} & =-c_{t} D_{21} \nabla x_{1}-c_{t} D_{22} \nabla x_{2} .
\end{aligned}
$$

Multicomponent Effects

$$
(\mathbf{J})=-c_{t}[B]^{-1}(\mathbf{d})
$$

$\left(\begin{array}{l}\mathbf{J}_{1} \\ \mathbf{J}_{2} \\ \vdots \\ \mathbf{J}_{n-1}\end{array}\right)=-c_{t}\left[\begin{array}{llll}D_{1,1} & D_{1,2} & \cdots & D_{1, n-1} \\ D_{2,1} & D_{2,2} & \cdots & D_{2, n-1} \\ \vdots & \vdots & \ddots & \vdots \\ D_{n-1,1} & D_{n-1,2} & \cdots & D_{n-1, n-1}\end{array}\right]\left(\begin{array}{l}\mathbf{d}_{1} \\ \mathbf{d}_{2} \\ \vdots \\ \mathbf{d}_{n-1}\end{array}\right)$

Ternary Diffusion

For multicomponent effects to be important, $D_{i j} \nabla x_{j}$ must be significant compared to $D_{i i} \nabla x_{i}$.

$$
\begin{align*}
& \left|\frac{D_{i j} \nabla x_{j}}{D_{i i} \nabla x_{i}}\right| \sim \mathcal{O}(1) \tag{1}\\
& \nabla \\
& \left|D_{i j} / D_{i i}\right| \sim \mathcal{O}(1) \\
& \nabla x_{j} \neq 0
\end{align*}
$$

Fick's Law \& Reference Velocities

How do we write Fick's law in other reference frames?
$(\mathbf{J})=-c[D](\nabla x) \quad$ Molar diffusive flux relative to a molar-averaged velocity.
$(\mathbf{j})=-\rho_{t}\left[D^{\circ}\right](\nabla \omega) \quad$ Mass diffusive flux relative to a mass-averaged velocity.
$\left(\mathbf{J}^{V}\right)=-\left[D^{V}\right](\nabla c) \quad$ Molar diffusive flux relative to a volume-averaged velocity.

Option I: Start with GMS equations and write them for the desired diffusive flux and driving force. Then invert to find the appropriate definition for $[D]$.

Option 2: Given $[D]$, define an appropriate transformation to obtain $\left[D^{\circ}\right]$ or $\left[D^{V}\right]$.

$$
\begin{array}{rlrl}
{\left[D^{\circ}\right]} & =\left[B^{u o}\right]^{-1}[\omega][x]^{-1}[D][x][\omega]^{-1}\left[B^{u o}\right] & B_{i k}^{u o} & =\delta_{i k}-\omega_{i}\left(\frac{x_{k}}{\omega_{k}}-\frac{x_{n}}{\omega_{n}}\right) \\
& =\left[B^{o u}\right][\omega][x]^{-1}[D][x][\omega]^{-1}\left[B^{o u}\right]^{-1} & B_{i k}^{o u}=\delta_{i k}-\omega_{i}\left(1-\frac{\omega_{n} x_{k}}{x_{n} \omega_{k}}\right) \\
{\left[D^{V}\right]} & =\left[B^{V u}\right][D]\left[B^{V u}\right]^{-1} & B_{i k}^{V u}=\delta_{i k}-\frac{x_{i}}{\bar{V}_{t}}\left(\bar{V}_{k}-\bar{V}_{n}\right) \\
& =\left[B^{V u}\right][D]\left[B^{u V}\right] & B_{i k}^{u V}=\delta_{i k}-x_{i}\left(1-\frac{\bar{V}_{k}}{\bar{V}_{n}}\right)
\end{array}
$$

T\&K Example 3.2.I

Given [D^{V}] for the system acetone (1), benzene (2), and methanol (3), calculate $[D]$.
$(\mathbf{J})=-c[D](\nabla x)$
$(\mathbf{j})=-\rho_{t}\left[D^{\circ}\right](\nabla \omega)$
$\left(\mathbf{J}^{V}\right)=-\left[D^{V}\right](\nabla c)$

Diffusivities in units of $10^{-9} \mathrm{~m}^{2} / \mathrm{s}$

$\left[D^{V}\right]$	$\begin{aligned} & {\left[B^{V u}\right][D]\left[B^{V u}\right]^{-1}} \\ & {\left[B^{V u}\right][D]\left[B^{u V}\right]} \end{aligned}$	x_{1}	x_{2}	D_{11}^{V}	D_{12}^{V}	D_{21}^{V}	D_{22}^{V}
		0.350	0.302	3.819	0.420	-0.561	2.133
		0.766	0.114	4.440	0.721	-0.834	2.680
	m^{3}	0.533	0.790	4.472	0.962	-0.480	2.569
V_{1}	$=74.1 \times 10^{-6} \overline{\mathrm{~mol}}$	0.400	0.500	4.434	1.866	-0.816	1.668
	$89.4 \times 10^{-6} \underline{\mathrm{~m}^{3}}$	0.299	0.150	3.192	0.277	-0.191	2.368
		0.206	0.548	3.513	0.665	-0.602	1.948
	$=40.7 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}$	0.102	0.795	3.502	1.204	-1.130	1.124
		0.120	0.132	3.115	0.138	-0.227	2.235
		0.150	0.298	3.050	0.150	-0.269	2.250

