Outline
 Simplified Models for Interphase Mass Transfer

\notin Interphase mass transfer

- Mass balances at interfaces (phase boundaries, etc)
- Mass transfer coefficients
* Film Theory
- gives us insight into defining mass transfer coefficients for a very specific case...
Φ The "Bootstrap Problem"
- given diffusive fluxes, can we find the total fluxes?

Solution procedure - Film Theory

Interphase Mass Transfer

ChEn 6603

Interface Balance Equations

Generic transport equation (mass-averaged velocity):

$$
\frac{\partial \rho_{t} \Psi}{\partial t}+\nabla \cdot\left(\rho_{t} \Psi \mathbf{v}\right)+\nabla \cdot \boldsymbol{\Phi}=\zeta
$$

Concept: solve the governing equations in each phase, and connect them with an appropriate balance at the interface (boundary condition).

Balance at the interface surface

$\int_{S} \underbrace{\left(\Phi^{q}+\rho_{t}^{q} \Psi^{q}\left(\mathbf{v}^{q}-\mathbf{u}^{I}\right)\right) \cdot \xi}_{\text {Flux of } \Psi \text { from } q \text { side }} \mathrm{d} S-\int_{S} \underbrace{\left(\boldsymbol{\Phi}^{p}+\rho_{t}^{p} \Psi^{p}\left(\mathbf{v}^{p}-\mathbf{u}^{I}\right)\right) \cdot \xi}_{\text {Flux of } \Psi \text { from } p \text { side }} \mathrm{d} S=\int_{S}$
\mathbf{u}^{I} Interface velocity
V Mass-avg. velocity
$\Psi \quad$ Quantity we are conserving
Φ Non-convective (diffusive) flux

Note that if $\quad \zeta^{I}=0$

$$
\text { and } \quad \mathbf{u}^{I}=0
$$

$$
\text { then } \quad \mathbf{n}_{i}^{p} \cdot \xi=\mathbf{n}_{i}^{q} \cdot \xi
$$

\mathbf{u}^{I} may be related to ζ^{I} (e.g. ablation)

We would need a model for this.

See T\&K §I. 3

$$
\int_{\mathrm{S}} \underbrace{\left(\boldsymbol{\Phi}^{q}+\rho_{t}^{q} \Psi^{q}\left(\mathbf{v}^{q}-\mathbf{u}^{I}\right)\right) \cdot \xi}_{\text {Flux of } \Psi \text { from } q \text { side }} \mathrm{dS}-\int_{\mathrm{S}} \underbrace{\left(\boldsymbol{\Phi}^{p}-\rho_{t}^{p} \Psi^{p}\left(\mathbf{v}^{p}-\mathbf{u}^{I}\right)\right) \cdot \xi}_{\text {Flux of } \Psi \text { from } p \text { side }} \mathrm{dS}=\int_{\mathrm{S}} \underbrace{\zeta^{I}}_{\text {Interfacial generation of } \Psi} \mathrm{dS}
$$

	Continuity	Momentum	Energy	Species
Ψ	1	\mathbf{v}	$e_{0}=u+\frac{1}{2} \mathbf{v} \cdot \mathbf{v}$	ω_{i}
$\boldsymbol{\Phi}$	0	$p \mathbf{I}+\tau$	$\mathbf{q}+(p \mathbf{I}+\tau) \cdot \mathbf{v}$	\mathbf{j}_{i}
ζ	0	$\sum_{i=1}^{n} \rho_{i} \mathbf{f}_{i}$	$\sum_{i=1}^{n} \rho_{i} \mathbf{f}_{i} \cdot \mathbf{u}_{i}$	σ_{i}
ζ^{I}	0	0	0	σ_{i}^{I}

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=-\nabla \cdot \rho \mathbf{v} \\
& \frac{\partial \rho \mathbf{v}}{\partial t}=-\nabla \cdot(\rho \mathbf{v v})-\nabla \cdot \boldsymbol{\tau}-\nabla p+\sum_{i=1}^{n} \omega_{i} \rho \mathbf{f}_{i} \\
& \frac{\partial \rho \omega_{i}}{\partial t}=-\nabla \cdot\left(\rho \omega_{i} \mathbf{v}\right)-\nabla \cdot \mathbf{j}_{i}+s_{i} \\
& \frac{\partial \rho e_{0}}{\partial t}=-\nabla \cdot\left(\rho e_{0} \mathbf{v}\right)-\nabla \cdot \mathbf{q}-\nabla \cdot(\boldsymbol{\tau} \cdot \mathbf{v})-\nabla \cdot(p \mathbf{v})+\sum_{i=1}^{n_{s}} \mathbf{f}_{i} \cdot\left(\rho_{i} \mathbf{v}+\mathbf{j}_{i}\right)
\end{aligned}
$$

Mass Transfer Coefficients

Solution Options:

- Resolve the spatial gradients, solve equations as we have thus far, with appropriate interface BCs (flux matching at interface)
- Model the diffusion process at a "larger" scale between interface and "bulk"

Discrete approximation to Fick's Law for diffusion normal to the interface:

$$
\left(J^{p}\right) \approx-c_{t}^{p}\left[D^{p}\right] \frac{\left(x_{I}^{p}\right)-\left(x_{b}^{p}\right)}{L}
$$

Note that if L is "big" then we may miss important features.

$$
\begin{aligned}
\left(J^{p}\right) & \approx c_{t}^{p}\left[D^{p}\right] \frac{\left(x_{b}^{p}\right)-\left(x_{I}^{p}\right)}{L} & \Delta x_{i}^{p} & \equiv x_{i b}^{p}-x_{i I}^{p} \\
(J) & \approx c_{t}\left[k_{b}^{\bullet}\right](\Delta x) & \Delta x_{i}^{q} & \equiv x_{i I}^{q}-x_{i b}^{q}
\end{aligned}
$$

Mass transfer coefficient

- Incorporates "boundary layer" thickness and $D_{i j}$.
- If L is "large," then we are really burying a lot of physics in D / L.
- Is a function of \mathbf{J} itself!
- Must be corrected to account for the fact that we are burying more physics in this description.
- Often used for turbulent boundary layers also (more later)

"Low-flux"
M.T. coefficient
$\left[k_{b}^{\bullet}\right]=\left[k_{b}\right]\left[\Xi_{b}\right]$

More later
(patience)

Comparison w/ Fick's Law

Fick's Law

$$
(\mathbf{J})=-c_{t}[D](\nabla x)
$$

- Fick's law can be derived from irreversible thermodynamics.
- [D] are unique (for a given composition and ordering)
- Can describe multicomponent effects (osmotic diffusion, reverse diffusion, diffusion barrier)

M.T. Coeff Approach

$$
(J)=c_{t}\left[k_{b}^{\bullet}\right](\Delta x)
$$

- Empirical equation.
- $\left[k_{b}^{\bullet}\right]$ defined by (J) and (Δx). This means that there are $n-1$ equations defining a matrix with $(n-1) \times(n-1)$ elements. This implies that the $\left[k_{b}^{\bullet}\right]$ are not unique.
- Can describe multicomponent effects (osmotic diffusion, reverse diffusion, diffusion barrier)

Binary Mass Transfer Coefficients

$$
\begin{array}{r}
k_{b}=\frac{J_{1 b}}{c_{t} \Delta x_{1}} \text { "Low-flux limit"" } \kappa_{b}=\lim _{N_{1} \rightarrow 0} \frac{N_{1 b}-x_{1 b} N_{t}}{\left(x_{1 b}-x_{1 I}\right)} \quad k_{b}^{\bullet}=k_{b} \Xi_{b} \\
\text {-This defines the low-fluss MTC }
\end{array}
$$

$$
k_{b}[=] \mathrm{m} / \mathrm{s} \quad \text { Is it a velocity? }
$$

$$
k_{b}=\frac{J_{1 b}}{c_{t} \Delta x_{1}}, \quad J_{1 b}=c_{t} x_{1 b}\left(u_{1}-u\right)
$$

$$
\begin{aligned}
k_{b} & =\frac{\left(u_{1}-u\right)}{\Delta x_{1} / x_{1 b}} \\
\left(u_{1}-u\right) & =\frac{k_{b} \Delta x_{1}}{x_{1 b}}
\end{aligned}
$$

For a binary system, $k_{b}>0$, and is maximized when $\Delta x_{I}=1$ (which also implies $x_{l b}=1$)
k_{b} - maximum velocity (relative to mixture velocity) at which a component can be transfered in a binary system.

Summary \& a Path Forward

$$
(J)=c_{t}\left[k_{b}^{\bullet}\right](\Delta x) \quad\left[k_{b}^{\bullet}\right]=\left[k_{b}\right]\left[\Xi_{b}\right]
$$

\not MTC Approach is useful when we don't want to resolve the diffusion path

- Interfaces, boundary layers, turbulence, etc.
\& Formulation is a true multicomponent formulation
- Can describe osmotic diffusion, reverse diffusion, diffusion barrier.
© Still need to determine how to get $\left[k_{b}\right]$ and $\left[\Xi_{b}\right]$
- $\left[k_{b}\right]$ cannot be uniquely determined by (J) and (Δx).
- $\left[k_{b}\right]$ must be corrected ... how do we get $\left[\Xi_{b}\right]$?
- We will return to this later:
- Film theory (turbulent boundary layer theory)
- Correlations (heat-transfer analogies)
\not Can we get the total fluxes from (J) ?
- We will consider this issue soon. But first ... Film Theory!

Film Theory

CHEN 6603

Perspective

$$
(J)=c_{t}\left[k_{b}^{\bullet}\right](\Delta x) \quad\left[k_{b}^{\bullet}\right]=\left[k_{b}\right]\left[\Xi_{b}\right]
$$

We want to approximate J_{i} using Δx_{i} rather than resolving ∇x_{i}.

- Need a way to get $\left[\Xi_{b}\right]$ and $\left[k_{b}\right]$.
- Film Theory is one way to get $\left[\Xi_{b}\right]$ and $\left[k_{b}\right]$. It uses an analytic solution to the Maxwell-Stefan equations to deduce what $\left[\Xi_{b}\right]$ and $\left[k_{b}\right]$ should be.
${ }_{4}$ To get N_{i} :
- Could solve governing equations (momentum) \& fully resolve everything... - This defeats the purpose of using the MTC approach!
- Use the "bootstrap" approach (inject specific knowledge of the problem to get N_{i} from J_{i}). More soon!

Formulation - Film Theory

Concepts:

- Mass transfer occurs in a thin "film" or boundary layer. Outside of this, the composition is uniform due to well-mixedness (e.g. turbulence).
- Gradients in the boundary-tangential direction are negligible compared to boundary-normal gradients.

Formulation:

- One-dimensional continuity and species at steady-state w/o reaction:

$$
\nabla \cdot N_{t}=0, \quad \begin{array}{ll}
\Downarrow & \nabla \cdot N_{i}=0 \\
\Downarrow &
\end{array}
$$

- Constitutive relations (i.e. expressions for J_{i}) given by either GMS or Fick's Law.

$$
N_{t}=\text { const. }, \quad N_{i}=\text { const } .
$$

- Boundary conditions: known compositions

$$
\begin{array}{ll}
x_{i}=x_{i 0} & r=r_{0} \\
x_{i}=x_{i \delta} & r=r_{\delta}
\end{array}
$$

Assumptions:

- Steady-state
- I-D
- Ideal mixtures $[\Gamma]=[I]$.
- No reaction
- Isothermal
- "small" pressure gradients
- uniform body forces

Normalized coordinate: $\quad \eta \equiv \frac{r-r_{0}}{\ell}, \quad \ell \equiv r_{\delta}-r_{0}$

GMS:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} r}=\sum_{j=1}^{n} \frac{\left(x_{i} N_{j}-x_{j} N_{i}\right)}{c_{t} Ð_{i j}}
$$

$\begin{gathered}\text { GMS }(n-1 \operatorname{dim}) \text { in terms of } \\ \text { normalized coordinate. }\end{gathered} \frac{\mathrm{d} x_{i}}{\mathrm{~d} \eta}=\Phi_{i i} x_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n-1} \Phi_{i j} x_{j}+\phi_{i} \quad \Phi_{i i}=\frac{N_{i}}{c_{t} \Xi_{i n} / \ell}+\sum_{\substack{k=1 \\ k \neq i}}^{n} \frac{N_{k}}{c_{t} D_{i k} / \ell}$,

$$
\frac{\mathrm{d}(x)}{\mathrm{d} \eta}=[\Phi](x)+(\phi)
$$

$$
\begin{aligned}
\Phi_{i j} & =-N_{i}\left(\frac{1}{c_{t} \Xi_{i j} / \ell}-\frac{1}{c_{t} \Xi_{i n} / \ell}\right) \\
\phi_{i} & =-\frac{N_{i}}{c_{t} \Xi_{i n} / \ell}
\end{aligned}
$$

$\begin{aligned} & \text { Analytic solution (assuming } \\ & \quad N_{i} \text { are all constant) }\end{aligned}\left(x-x_{0}\right)=[\underline{\exp [[\Phi] \eta]}-[I]][\underline{\exp [\Phi]}-[I]]^{-1}\left(x_{\delta}-x_{0}\right)$
\uparrow
see T\&K Appendix B

$$
\begin{array}{|l|}
\hline \text { Matrix exponential! } \\
\exp [\Phi] \neq\left[\exp \left(\Phi_{i j}\right)\right]!
\end{array}
$$

$$
\left(x-x_{0}\right)=[\exp [[\Phi] \eta]-[I]][\exp [\Phi]-[I]]^{-1}\left(x_{\delta}-x_{0}\right)
$$

From the solution, we can calculate the diffusive fluxes and use them to help us determine what the MTCs are for this problem.

Fick's Law: $\quad(J)=-c_{t}[D] \frac{\mathrm{d}(x)}{\mathrm{d} r}$

$$
(J)=-\frac{c_{t}}{\ell}[D] \frac{\mathrm{d}(x)}{\mathrm{d} \eta}=c_{t}\left[k_{b}^{\bullet}\right](\Delta x)
$$

MTC Formulation: $(J)=c_{t}\left[k_{b}^{*}\right](\Delta x) \quad\left[k_{b}^{*}\right]=\left[k_{b}\right]\left[\Xi_{b}\right]$

$$
\frac{\mathrm{d}(x)}{\mathrm{d} \eta}=[\Phi]\left[\exp [[\Phi] \eta][\exp [\Phi]-[I]]^{-1}\left(x_{\delta}-x_{0}\right)\right.
$$

$$
\frac{\mathrm{d}(x)}{\mathrm{d} \eta}=[\Phi]\left[\exp [[\Phi] \eta][\exp [\Phi]-[I]]^{-1}\left(x_{\delta}-x_{0}\right)\right.
$$

At $\eta=0$

$$
\begin{gathered}
\left(J_{0}\right)=\frac{c_{t}}{\ell}\left[D_{0}\right][\Phi][\exp [\Phi]-[I]]^{-1}\left(x_{0}-x_{\delta}\right) \\
{\left[k_{0}^{\bullet}\right]=\frac{1}{\ell}\left[D_{0}\right][\Phi][\exp [\Phi]-[I]]^{-1}}
\end{gathered}
$$

$\begin{aligned} & \text { Low-flux } \\ & \text { limit: }\end{aligned} k_{b}=\lim _{N_{1} \rightarrow 0} \frac{N_{1 b}-x_{1 b} N_{t}}{\left(x_{1 b}-x_{1 I}\right)}=\frac{J_{1 b}}{c_{t} \Delta x_{1}}$

$$
\left[k_{0}\right]=\frac{1}{\ell}\left[D_{0}\right]
$$

Correction matrix:

$$
\left[\Xi_{0}\right]=[\Phi][\exp [\Phi]-[I]]^{-1}
$$

At $\eta=1$
$\left(J_{\delta}\right)=\frac{c_{t}}{\ell}\left[D_{\delta}\right][\Phi][\exp [\Phi]][\exp [\Phi]-[I]]^{-1}\left(x_{0}-x_{\delta}\right)$

$$
\left[k_{\delta}\right]=\frac{1}{\ell}\left[D_{\delta}\right]
$$

$$
\left[\Xi_{\delta}\right]=[\Phi] \exp [\Phi][\exp [\Phi]-[I]]^{-1}=\left[\Xi_{0}\right] \exp [\Phi]
$$

Re-Cap

We can now easily solve for (x) given (N).

- Assumes (N) is constant.

We can also easily solve for (J) directly given (N).
\notin We must specify:

- $[\Phi]$, which is a function of $(x),(N), Ð_{i j}$ and ℓ.
- [k], the low-flux MTC matrix.
- $[\Xi]$ - the correction factor matrix.
\notin Coming soon: solution procedure

See T\&K §8.3.I

Calculating [k]

$$
\begin{array}{rlrl}
& {[k]=\frac{1}{\ell}[D]} \\
& =\frac{x_{i}}{\kappa_{i n}}+\sum_{\substack{k=1 \\
k \neq i}}^{n} \frac{x_{k}}{\kappa_{i k}}, & \leftarrow \text { compare } \rightarrow B_{i i}=\frac{x_{i}}{D_{i n}}+\sum_{j \neq i}^{n} \frac{x_{j}}{D_{i j}}, \\
R_{i j} & =-x_{i}\left(\frac{1}{\kappa_{i j}}-\frac{1}{\kappa_{i n}}\right), & B_{i j}=-x_{i}\left(\frac{1}{D_{i j}}-\frac{1}{D_{i n}}\right) \\
\kappa_{i j} \equiv \frac{D_{i j}}{\ell} \text { Binary low-flux limit MTC } & \\
& {[k]=[R]^{-1}} & & {[k]=\frac{1}{\ell}[B]^{-1}}
\end{array}
$$

Notes

- We have a routine to calculate $[B]$ given (x) and $[Đ]$. We can re-use this to get $[R]$ by passing in (x) and $[\kappa]$.
- Alternatively, just calculate $[B]^{-1}$ and then scale by ℓ.

See T\&K §8.3.3 \& Appendix A
 Calculating [Ξ]

Recall what we found for $[\Xi]$ from film theory:

$$
\begin{array}{ll}
\text { At } r=r_{0}(\eta=0) & {\left[\Xi_{0}\right]=[\Phi][\exp [\Phi]-[I]]^{-1}} \\
\text { At } r=r_{\delta}(\eta=1) & {\left[\Xi_{\delta}\right]=[\Phi] \exp [\Phi][\exp [\Phi]-[I]]^{-1}=\left[\Xi_{0}\right] \exp [\Phi]}
\end{array}
$$

recall: $\exp [\Phi]$ is a matrix exponential;

$$
\exp [\Phi] \neq\left[\exp \left(\Phi_{i j}\right)\right]!
$$

$$
\begin{aligned}
& {[\Xi]=\sum_{i=1}^{n} \hat{\Xi}_{i}\left\{\frac{\prod_{\substack{m=1 \\
j \neq i}}^{m}\left[[\Phi]-\hat{\Phi}_{j}[I]\right]}{\prod_{\substack{j=1 \\
j \neq i}}^{m}\left[\hat{\Phi}_{i}-\hat{\Phi}_{j}[I]\right]}\right\}} \\
& \hat{\Xi}_{i 0}=\frac{\hat{\Phi}_{i}}{\exp \hat{\Phi}_{i}-1} \quad \hat{\Xi}_{i \delta}=\frac{\hat{\Phi}_{i} \exp \hat{\Phi}_{i}}{\exp \hat{\Phi}_{i}-1}
\end{aligned}
$$

m - number of eigenvalues of Φ
OR, see "expm" function in MATLAB.

Shortcuts...
 Re-use the B_matrix.m code by passing different arguments!

$$
\begin{array}{rlrl}
B_{i i} & =\frac{x_{i}}{D_{i n}}+\sum_{j \neq i}^{n} \frac{x_{j}}{D_{i j}}, \\
B_{i j} & =-x_{i}\left(\frac{1}{D_{i j}}-\frac{1}{D_{i n}}\right) & \begin{array}{ll}
B_{i i}=\frac{\alpha_{i}}{\beta_{i n}}+\sum_{j \neq i}^{n} \frac{\alpha_{j}}{\beta_{i j}}, \\
B_{i j}=-\alpha_{i}\left(\frac{1}{\beta_{i j}}-\frac{1}{\beta_{i n}}\right)
\end{array} & \begin{array}{ll}
\alpha_{i} & =x_{i} \\
\Phi_{i i} & =\frac{N_{i j}}{c_{t} D_{i n} / \ell}+\sum_{\substack{k=1 \\
k \neq i}}^{n} \frac{N_{k}}{c_{t} Ð_{i k} / \ell},
\end{array} \\
\Phi_{i j} & =-N_{i}\left(\frac{1}{c_{t} Đ_{i j} / \ell}-\frac{1}{c_{t} D_{i n} / \ell}\right) & \alpha_{i}=N_{i}
\end{array}
$$

$$
R_{i i}=\frac{x_{i}}{\kappa_{i n}}+\sum_{\substack{k=1 \\ k \neq i}}^{n} \frac{x_{k}}{\kappa_{i k}}
$$

$$
R_{i j}=-x_{i}\left(\frac{1}{\kappa_{i j}}-\frac{1}{\kappa_{i n}}\right)
$$

$$
[k]=[R]^{-1}
$$

$$
\begin{aligned}
\alpha_{i} & =x_{i} \\
\beta_{i j} & =\frac{1}{\ell} Đ_{i j}
\end{aligned}
$$

$$
\underset{\substack{\text { THE } \\ \text { UNIVRITTY } \\ \text { OF UTAH }}}{\log } \kappa_{i j} \equiv \frac{D_{i j}}{\ell}
$$

The "Bootstrap" Problem

Getting N_{i} from J_{i} and Physical Insight

The "Bootstrap" Problem

If we know the diffusive fluxes, can we obtain the total fluxes?

Bootstrap

$J_{i} \xrightarrow{\text { Problem }} N_{i} \quad$ Can be solved for some special cases.

General problem formulation:

$$
\sum_{i=1}^{n} \sqrt{\nu_{i} N_{i}=0}
$$

Species Molar Flux: $N_{i}=J_{i}+x_{i} N_{t}$

$$
\begin{aligned}
\nu_{i} N_{i} & =\nu_{i} J_{i}+\nu_{i} x_{i} N_{t} \\
\sum_{i=1}^{n} \nu_{i} N_{i} & =\sum_{i=1}^{n} \nu_{i} J_{i}+N_{t} \sum_{i=1}^{n} \nu_{i} x_{i}=0
\end{aligned}
$$

Solve for $N_{t}: \quad N_{t}=-\left(\sum_{i=1}^{n} \nu_{i} J_{i}\right)\left(\sum_{i=1}^{n} \nu_{i} x_{i}\right)^{-1}$
remove the $n^{\text {th }}$ diffusive flux:

$$
N_{t}=-\sum_{k=1}^{n-1} \underbrace{\frac{\nu_{k}-\nu_{n}}{\sum_{j=1}^{n} \nu_{j} x_{j}}}_{\Lambda_{k}} J_{k}
$$

$$
N_{i}=J_{i}+x_{i} N_{t}
$$If we can get$\beta_{i k}$ (or Λ_{k}),

we can solve

Solving the Bootstrap Problem

$$
\sum_{i=1}^{n} \nu_{i} N_{i}=0 \quad N_{i}=\sum_{\substack{k=1 \\ \text { Bootstrap matrix }}}^{n-1} J_{i k} \quad \beta_{i k} \equiv \delta_{i k}-x_{i} \Lambda_{k} \quad \Lambda_{k}=\left(\nu_{k}-\nu_{n}\right)\left(\sum_{j=1}^{n} \nu_{j} x_{j}\right)
$$

Equimolar counterdiffusion: $N_{t}=0$

$$
\begin{aligned}
& N_{i}=J_{i} \Longrightarrow \nu_{i}=\nu_{n}, \quad i=1,2, \ldots, n \\
& \beta_{i k}=\delta_{i k}
\end{aligned}
$$

Stefan Diffusion: $N_{n}=0$

$$
\nu_{i}=0, \quad \nu_{n} \neq 0, \quad\left(N_{n}=0\right)
$$

One component has a zero flux, $N_{n}=0$.

- Condensation/evaporation
- Absorption (similar to condensation)

$$
\beta_{i k}=\delta_{i k}+\frac{x_{i}}{x_{n}}
$$

Flux ratios specified: $N_{i}=z_{i} N_{t}$

- Condensation of mixtures (T\&K Ch. I5)
- Chemical reaction where the chemistry is fast relative to the diffusion (diffusioncontrolled).

$$
\begin{aligned}
& N_{i}=x_{i} N_{t}+J_{i} \\
& N_{i}=x_{i} \frac{N_{i}}{z_{i}}+J_{i} \\
& \sum_{i=1}^{n} N_{i}\left(1-\frac{x_{i}}{z_{i}}\right)=\sum_{i=1}^{n} J_{i}=0 \\
& \sum_{i=1}^{n} \nu_{i} N_{i}=0 \Rightarrow \nu_{i}=1-\frac{x_{i}}{z_{i}} \quad \beta_{i k}=\frac{\delta_{i k}}{1-x_{i} / z_{i}}
\end{aligned}
$$

Using the Boostrap Matrix

$$
N_{i}=\sum_{k=1}^{n-1} \beta_{i k} J_{k}
$$

Write this in matrix form: $\quad N_{t}=-(\Lambda)^{T}(J)$

$$
(N)=[\beta](J)
$$

Use with MTCs:

In the "bulk:"

$$
\begin{aligned}
\left(J_{b}\right) & =c_{t, b}\left[k_{b}^{\bullet}\right]\left(\Delta x_{b}\right) \\
\left(N_{b}\right) & =\left[\beta_{b}\right]\left(J_{b}\right)=c_{t, b}\left[\beta_{b}\right]\left[k_{b}^{\bullet}\right]\left(\Delta x_{b}\right)
\end{aligned}
$$

$$
\left(N_{I}\right)=\left(N_{b}\right) \quad \text { (no reaction in boundary layer) }
$$

Binary System

$$
\begin{aligned}
N_{1}=c_{t} \beta_{I} k_{I}^{\bullet} \Delta x_{1} & =c_{t} \beta_{b} k_{b}^{\bullet} \Delta x_{1} \\
& \Downarrow \\
\beta_{I} k_{I}^{\bullet} & =\beta_{b} k_{b}^{\bullet}=\frac{N_{1}}{c_{t} \Delta x_{1}}
\end{aligned}
$$

Multicomponent System

$$
\left[\beta_{I}\right]\left[k_{I}^{\bullet}\right](\Delta x)=\left[\beta_{b}\right]\left[k_{b}^{\bullet}\right](\Delta x)
$$

Since $[A](x)=[B](x)$ doesn't imply that $[A]=[B]$, we cannot conclude anything about the relationship between $\left[\beta_{b}\right]\left[k_{b}^{\circ}\right]$ and $\left[\beta_{I}\right]\left[k_{I}^{\bullet}\right]$.

Re-Cap

\& Bootstrap problem: exists because we don't want to solve all of the governing equations, but we want to get the total fluxes anyway.

* Interphase mass transfer: simplified approach to avoid fully resolving interfaces.
- Non-uniqueness of MTCs

Film Theory:A "Simple" Solution Procedure

Given $\left(x_{0}\right),\left(x_{\delta}\right), c_{t}, \kappa_{i j}$,
I. Compute $[k]=[D] / \ell$.
2. Compute $[\beta]$ from the appropriate expressions given the specific problem.
3. Estimate $(N)=c_{t}[\beta][k](\Delta x)$. (This does not employ the correction matrix since we don't yet have [$[\mathrm{E}]$.
4. Calculate $[\Phi]$
5. Calculate $[\Xi]$
6. Calculate $(J)=c_{t}[k][\Xi](\Delta x)$.
7. Calculate $(N)=[\beta](J)$.
8. Check for convergence on (N). If not

$$
\Phi_{i i}=\frac{N_{i}}{c_{t} 刀_{i n} / \ell}+\sum_{\substack{k=1 \\ k \neq i}}^{n} \frac{N_{k}}{c_{t} \Xi_{i k} / \ell},
$$

$\Phi_{i j}=-N_{i}\left(\frac{1}{c_{t} \#_{i j} / \ell}-\frac{1}{c_{t} \Xi_{i n} / \ell}\right)$ converged, return to step 4.

Uses successive substitution to converge (N). This could lead to poor convergence (or no convergence) depending on the guess for (N).

Note: we could use "better" ways to iterate (N) to improve convergence.

See Algorithms 8.2 \& 8.3 in T\&K (pp. I80, 182)

Nonideal Systems

Recall we assumed $[\Gamma]=[1]$. What if that is not valid???

Approach:

- Repeat original analysis, retaining [Γ].
- Write $[D]=[\Gamma][B]^{-1}$.
- We can re-use the original results directly, using $[D]=[\Gamma][B]^{-1}$... (typically also approximate [Γ] as constant)
- See also T\&K §8.7.2, §8.8.4

Estimation of MTCs [k]

Motivation:

- Prior approaches have required knowledge of ℓ. What if we don't know this? (often the case)
- Idea: use correlations (dimensionless groups)

Sherwood number: $\quad[\mathrm{Sh}]=d[k][D]^{-1}$
Stanton number: $\quad[\mathrm{St}]=[k] / u$
often correlated as function of $\mathrm{Re},[\mathrm{Sc}]$.
often correlated as function of [Sc].

$$
[\mathrm{Sc}]=\nu[D]^{-1}
$$

These typically correlate the lowflux MTCs. Sill need to apply $[\Xi]$.

Correlations abound! Be sure that the one you use is appropriate!

