Some Notes on Matrix Operations Relevant to the Momentum and Energy Equations

James C. Sutherland

The "outer product" shows up in the momentum equations when written in vector form:

$$
\nabla \cdot(\rho \underbrace{\mathbf{v} \otimes \mathbf{v}}_{\text {Outer product }}) .
$$

In index (Einstein) notation, this is written as:

$$
\frac{\partial}{\partial x_{i}}\left(\rho v_{i} v_{j}\right)
$$

The outer product takes two vectors and yields a tensor. For example, consider the velocity vector,

$$
v_{i}=\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
$$

The outer product of two velocity vectors is written in index notation as

$$
v_{i} v_{j}=\left[\begin{array}{ccc}
v_{x} v_{x} & v_{x} v_{y} & v_{x} v_{z} \\
v_{y} v_{x} & v_{y} v_{y} & v_{y} v_{z} \\
v_{z} v_{x} & v_{z} v_{y} & v_{z} v_{z}
\end{array}\right]
$$

Contraction of two matrices is written in vector form as A:B. We see this term in the internal energy and enthalpy equations:

$$
\boldsymbol{\tau}: \nabla \mathbf{v}
$$

which can be written in index notation as

$$
\tau_{i j} \frac{\partial v_{i}}{\partial x_{j}},
$$

or in summation notation as

$$
\sum_{i=1}^{3} \sum_{j=1}^{3} \tau_{i j} \frac{\partial v_{i}}{\partial x_{j}}
$$

This is a scalar.

