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Nonlinear Egns. - Overview

¢ Characteristics:
* May have 0 ... many solutions

* Solution methods are iterative and require an initial
guess for the solution.

* Not guaranteed to find the solution, even if one exists!
» Initial guess can be critical to finding the solution. Write the equation

» Bad initial guess may lead to no convergence, or convergence in the form f(x)=0.
to a wrong (unintended) root.

* Solve for roots, f(x)=0. If you want f(x)=a, then write in Is the root
) bracketed, a<x<b?
residual form, r(x)=f(x)-a and solve r(x)=0.

¢ Solution Approaches
* Closed-Domain Methods

» Bracket the root and “home in” on it.

Yes No

» Quite simple & robust, but require you to bound the root. Closed-domain Open-domain

methods

methods

» Can be problematic if you bound multiple roots...

* Open Domain Methods

» Require an initial guess for the solution, but not a bracket.

e Newton’s Method
e Secant Method

* Bisection

* Regula Falsi

» More efficient, but less robust than closed-domain methods.

THEU

UNIVERSITY
of UTAH

Wednesday, April 11, 12 3



Nonlinear Systems - Newton’s Method

/ fi(zi, 22, ,Tpn) \
f(x) =0 <) fo(z1, 22, ) _ 0

X is a vector
\ fn(T1, 22, ,2y) /

of unknowns.
Taylor Series expansion of f; in terms of x:

Algorithm
Given f(x), Xo, J.

" 0f; 5 1. Calculate [J] & f(x) at the
fi(x) & fi(xo) + — (iEJ B xj(j) +0(Az7) current guess for (x).
J: WV
0T A 2. Solve for (Ax)
Example: n=2 equations: 9, o, 3. Update x
fi(zi,22) = fi(z10,220)+ a—(% —x10) + a—(l’Q — T90)
8?1 (‘;;‘2 4. If not converged, go to 1.
fo(z1,22) = fa(z10,220)+ a—;(ﬂfl —x10) + 8—$Z(ﬂ?2 — X90)

f(x) ~ f(xp) + JAx Axis a vector of corrections (updates).
We want solution at f(x)=0. Therefore:

- Of1(x0)  9f1(x0) Of1(x0) ~
8%1 8332 c%cn Th .
Of2(x0)  9f2(x0) 0f2(x0) Newton’s JAX — —f( ) S thisisa
7 Oz, Dz Oz, Method X = X0/} linear system
o - - - of equations!
O fn(%0) O fn(%0) O fn(*%0)
Ul\lllll\L)ySiTY - 8%1 - 3562 - 8xn : -
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Newton’s Method - Example

1
Original Equations: 5:133 +y =4z

y = sin(x) exp(—x)

1
Modified Equations: f; = §x3+y—4az
fo = y—sin(z)exp(—x)
- 0fi  Of1 3.2
v cxc —4 1
Jacobian: Il = gf? ‘%% - — cos(x) ex (E — 1
K p(—z) + sin(x) exp(—x)
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1. Guess x;

Example - cont'd

2. Calculate [J] & (f)

3. Solve for (A)

4. Update X;

2

-1.9 1.8

QZ’:_Q’

|
(

2.0

7]

0.4817
—0.9635

(A) =

Y

1
—3.6439 1 ]

—1

<f>=(
)

y = —4.9635

0.0
2.7188

4t

1
o= §x3‘|‘y—4x
f2

Yy — SiIl(.CIL') eXp(_:C)

2k

-1.5183 -4.9635

-1.4631 -4.2932

rwlnl=lo] =

_1.461 1 -4.2848
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Software Tools

Must provide a function to evaluate the residual.

¢ MATLAB

* FZERO - good for single nonlinear equation, solves for x such that f{x)=0.
* FSOLVE - for systems of nonlinear equations, finds x; such that f;(x;)=0.
» requires the “optimization toolbox™

* FMINSEARCH - good for systems of nonlinear equations

» Searches for the minimum, not the zeros.

¢ Excel

* Goal Seek - single variable

* Solver - multiple variables

Solve the last problem again in MATLAB...
U
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Algebraic
Equations
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Analysis of PDEs

PDEs

=
c
3
3
e,

-0 -0 -0

3-D rectangular coordinate system: V =¢— + j— + k—

oT

Plp 5 = —PCpU- VT +

Convection of T

(velocity pushing
it around)

Time-rate of
changein Tata
point in space.

Assume:
|. Velocity is zero.
2. Pressure is constant.
3. Steady-state.
4. q =-AVT (Fourier’s
Law of conduction)

S

A\ is constant.

o

One-dimensional

d2T ST

dz2 ~ A

Ox 0y 0z
Op .
5 +u-Vp+7:Vu—-V-q+ st
T changes due T changes T changes T changes
to changes in p. due to due to from other
viscous thermal & sources
heating. species (reaction,
diffusion. radiation,
etc).

Assume:
|. Velocity is zero.
2. Pressure is constant.
3. T does not vary
spatially.
4. st =-hA/V (T-Tx)

dT hA
dt pc,V
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Numerical Solutions to PDEs

¢ For systems which have a time derivative (0 ¢/0r)

* Convert the PDE into a system of ODEs

» Method of Lines:“Discretize” in space.Then we are left with a
system of ODEs.

» Number of ODEs is dependent on spatial discretization.

¢ For PDEs which do not have a time derivative
(Elliptic PDEs):
* Called “boundary value problems”
e Convert to a big system of (nonlinear) equations.

* Number of equations depends on spatial discretization

(next).

U
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Elliptic PDEs

Here we will show examples primarily for
Boundary-Value ODEs

. . éyzqu 6922Q6 ngb
Elliptic PDE: 92 T a2 = D,

Boundary d%¢ sy
value ODE: dz2 Dy

IIIII U
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Discrete Calculus (1-D)

N Az >

>
N

!

q. 1
—> 1,—|—2

TATIIEIINRNRNES
~S~.
<
AR SR AR R RRRRRNNY
S'Q
l\D|| —
|
¥
o
|

N
-

&N
B~

Assume a flux, g, of the form:

do

L — b, q — —
% _ ¢7,—|—1 ¢’L | O(AZ2) dZ
dz |, 1 Az .
2 We may approximate ¢ as:
Approximation for the derivative of Pit1 — @i
¢ at the midpoint of two points. q 1 ~—-D 1
y i+35 i+35 Az
Pi — Pi—1
q’i—% N _Di—% Az

U
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Second Derivatives

~ %
/| L
Z 2
d¢ . ¢i—|—1 ¢z O(A / L -
d_ 1_ A (Z) ?CCCECECECCC?
N i+5 & ? Qi Qi Piv1i ?
/ e
Z g
d |~
Use the same approximation on 7=7, =7
the derivatives of ¢ to obtain:
do _ do
d2 dz it X dz|. 1
T 'S S
dz2 |, Az
_ 1 ¢’i—|—1 _ ¢Z . ¢Z o ¢7;—1 | O(AZZ)
Az Az Az |
d2¢ ¢,+1 - 2¢, 4 ¢,_1 Approximation for the
— | = ’ 7’2 ’ | O(AZ2) second derivative, valid for
0 dz= |, Az ) uniformly spaced cells.
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Example - Steady Diffusion

. 8
Steady state, no convection: V -q = s V-J;, = ]\42
)
“Effective binary” or heat conduction: q = —DV ¢
S
Constant diffusivity: V>¢ = )
d? S
One-dimensional: —¢ - — —
dz? D
’ %
e L
S e
Z — Z
2 -
d ¢ _¢i—|—1_2¢’i+¢i—1 | O(AZQ) ? o o ¢oqg ¢oo o . o ?
dz2| Az? | 2 e ¢z
) /) e
Z Z
/| -
=7, =7y
L — Db . S. We can apply this at all “interior’}
¢Z+1 Q5z2—|- ¢Z L _ > points. At the boundaries, we
Az D must modify this....

U
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Dirichlet Boundary Conditions

<
I
S
&

If the solution variable is known at
the boundary, then we call this a

<

Dirichlet boundary condition.

A 2 D points, 2 <i=<n-1.

AN

Qit1 — 20; + i1 S; This applies at all interiorJ

N

Il

2
)

Linear interpolation

/between “0” and “1”

At <0y ¢=¢ZO- bo —; b1 — gbzo = ¢p = 2¢Zo — ¢

Using the top P2 —3¢1 _ 51 202, applies at i=1J
equation, Az2 D AZ?

At 71, p=ch... %“; Pn b o it = 2, — b

Usingthe top ®Pn—-1—3Pn _ Sn B 20,

'U' equation, A 22 D A 2
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Neumann Boundary Conditions

- . . . do d¢
If the derivative solution variable is | =" | =F
20,/ zr, |7
known at the boundary, then we call < %
, » o’ -
this a Neumann boundary condition. 7 — -
? ° ° ° ° o o ?
2 Pit Pi Pini -
Qi1 — 20; + @;_1 S This applies at all interior 2 ?
A 22 D points, 2 <i=<n-1. - -
7=2, =7
aci=l, PP g gy = g oA
Az
Using the top — @1 + @2 __S1 @ aoplies at i=1
equation, Az2 D Az PP '
At i=n, §bn+1A; O = 0L = Ont1 = PBrLAz+ ¢,
Using the top —On + Pn—1 __5n ﬁ_L “oolies at i=n
U equation, A 2 D Az PP -
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Example: Steady Conduction

temperature, then this looks like ~ 5
a “Diffusion-reaction balance” dz A

2
If it were species rather than d2T s(z) (Z - %)
_ s = exp

Boundary T(Z — 0) — 0 N — 10-3
conditions: a7 v = 103
T = 0 L = 1
z=1L
Find 7(2).
Steps:
|. Write down the discrete equations for interior
2. Write discrete equations at the boundary.
3. Write the matrix to be solved.
U;;LVETY 4. Finally, go to Matlab to solve the problem.

OF UTAH
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2
Interior equations 11 — 27; 4+ T4+ S; o — oxp | — (Zz - %)
(1<i<n) A 22 A PP

~
Left Boundary To — 2T12+ 1> __a (must eliminate 7)) 11 + 1o =T(z=0)=0
(l = 1) AZ >\ 2
—3T1 -+ T2 B _i
Az? D)
nght .BOLIndary Ty =210 + Tn+1 __5n (must eliminate 7+1) Lnt1 = dn — d_T =0
(i = n) Az2 A Az dz | __;
Tn—l _ Tn o Sn
A 22 I

Left boundary condition

_(—3 1) 0 0 0 ] ( T1 \ / S1 \
For 5 control 1 -2 1 0 0 T5 A2 | 52
volumes, we have: o 1 -2 1 0 Is | = | S8
0 0 1 —2 1 T4 S4
0

. o 0 0 @)\ n vy

Ul\(I)[F\{JETE}\Sl:I{TY Right boundary condition
Wednesday, April 11, 12
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Nonlinear BVPs

Example: dQ—T — —« (T4 T4 )
pe. dz2 >0
d2_T i =20+ T
dz? 0 Az? Nonlinear

Discrete equation to solve 1;—1 — 215 + 111
at each “interior” point A2

Options:

|. Leave T:* on the right hand side & try to solve the
linear system (not a good option).

2. Solve the nonlinear system of equations using
Newton’s method.

* rewrite in residual form
* requires a Jacobian matrix
* This is the most general approach (big hammer)

3. Linearize the equation.

Wednesday, April 11, 12
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L inearization

Example: v =52’ — 2z

Taylor series expansion about x:

f(@) = f(mo) + f'(w0)(x — z0) + f"(%)( I I

n!

f(n) (7o) (x — 330)“+1

~ 3 2
Yy X OT, — 2T, + (155’70 - 2) (x — o) Now y is linear with respect to x
— _1Oxi i (15:1;3 — 2z (nonlinear with respect to x,).

y + 10x°
1522 — 2
2. Calculate new value for x. 0

3. if Ix-x,| > € then x,=x, return 1 I 09231
/4

to step 2. Otherwise, done! 2 [09231[0.9151

Example: Solve for x such that y=2. x =

3 10.9151]0.9150

Exercise: what happens when we
9 change our initial guess to x=0?

UNIVERSITY
OFUTAH
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Linearization for Nonlinear BVPs

Linearize T:* term about 7;":
Ti 1 — 215 + T4 A rd l e
Ar - ol T~ (T7)" + AT)NT 1)
Tio1 —2T; + Tita 4 \3 ] 4
A2 = —a [(T7)* +4(T7)(T, = T7) — T3,

1 2 1 Applies to
— T4 - 4a(T7)° | T - Tiv1 = a [3(T)* + T ]| aincerior
A£U2 ’ AZEQ ( ‘ ) ’ AZE2 Z_I_ [ ( ’ ) OO] points.

- BC4 ] ( 1T \ ( bcq \
s~ (me +4a(T3)) v 0 T, o [3(T5)" + %]
0 v —(a 4T 0)°)  xp T o [3(Ty 1) + T
i BG, |\ 1. ) \ ber )
Boundary conditions |. Guess the solution values (77")
implemented as 2. Update the LHS matrix and RHS
previously discussed. vector given these values for 7.
3. Solve the system of equations for T;.
4. If ||T.T:"|| > € then set T;" = T; and You choose the norm
return to step 2. Otherwise, we have you want (L, L)
Ug;;tvgw the answer.

Wednesday, April 11, 12 20



“Elliptic” PDEs

In chemical engineering applications, elliptic PDEs 2 =
typically arise from steady-state diffusion problems. Vig = f(x’ ¢)
0%¢  0%*¢

@_l_@—y?:f(w’y’gb) <

two-dimensional
rectangular coordinates

Second-order gbi—l,j _ 2¢737j T ¢i—|—1,j 4 ¢i,j—1 _ 2¢i7j + sz',j—l—l _ f($ Y ¢ ) Applies at all
T 1,719 Jt,]9 ¥T,]

discretization: A2 AyQ “interior” points.
Variable numbering (4x4 grid)
. 10. . : 1 . 10. . * (x,y) layout
A d I * solution index (eqn #) layout
1,4 24 34 44
o O O O O
o | 13 14 15 16
1,] 1
1,3 23 33 43
O O O O
9 10 11 12
A B
i—1y-1 i+ 1,5 -1 1,2 2.2 3,2 4,2
O O O O
5 6 7 8
* At i=1, and i=n, apply x boundary conditions.
1,1 2,1 3,1 4,1
L At Jj=1, and j=n, apply y boundary conditions. \1? \2? ? ?

UNIVERSITY
OFUTAH
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Pi—1,j — 2Qi; + Oit1,j

Azx?

THLU
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BC 7 0 0 77 0
Ala:2 - %2932 Alzg 0 0 I
0 zz ~am &z O 0
0 0 77 BC 0 0
a7 0 0 0 —= 7?7

1 1 1

0 Ay? 0 0 Ax? —2 (AmQ
0 0 a7 0 0 N
0 0 0 a2 (1) 0
0 0 0 0 3z 0
1
0 0 0 0 0 A
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

— 205 + Qi j+1

N Gi i—1

Ay?

O
13

O

14

0 0 0 0

0 0 0 0

77 0 0 0

0 77 0 0

0 0 Ay 0

1 1 1

Ay2> Ax? 0 0 Ay?
—2 (Alz2 + A1y2> Aiﬁ 0 0

7?7 ~ A 02 0

0 0 — A 77

1 1 1
0 0 Ax? —2 <A:1:2 + Ay?

ay7 0 0 v

0 Ay 0 0

0 0 77 0

0 0 0 77

0 0 0 0

0 0 0 0

— f(xi,jayi,ja¢i,j)

O
16

O

15

O
11

O
12

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Ay 0 0 0
0 A (1) 0
0 0 a7 O
1 1
Ax? 0 0 Ay?
—2 (Alz2 + A%ﬁ) ﬁ 0 0
?7? — A%ﬁ 0 0
0 0 BC 77
0 0 1 —2
Ax?2 Afcz
?? 0 0 AT
0 ?? 0 0

= O O O O O OO ooo

>
{dl\)

o O

I
[\}&M

S
8]

Note: if f(x,y) depends
on ¢ then this is a
system of nonlinear

equations!
o ]
0 ¢1 bey
0 P2 f(z2,92, ¢2) + bea
0 ¢3 f(z3,y3,¢3) + bes
0 G4 bey
0 ®s5 f(zs,ys, ¢5) + bes
0 b6 f(z6, 6, P6)
o7 f(xr,y7,¢7)
0 bs f(xs,ys, ¢g) + bes
0 b9 f(w9,y9, Pg) + becg
0 P10 f(x10,Y10: $10)
¢11 f(x11, yi1, é11)
0 P12 f(x12, 412, $12) + beio
A1y2 b13 f(x7,y7, d7) + beas
0 ®14 f(@14, Y14, P14) + bC14
0 P15 f(z15, 415, P15) + bes
T P16 beie
BC

Wednesday, April 11, 12
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Parabolic PDEs

OT 0T
Poogr = Nog2 5T
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Ordinary Differential Equations
(ODEs)

A coupled system do;

— F(h
of ODE:s: dt (@3)
Explicit: Implicit:
n-+1 n
HTE — ¢; ' — 9 — F ("] O(AL
L = (oD + O(A) Al ((¢57) + OAY
n+l  n System of
r. — F.(qgf%‘H) _ ¢ ¢ n)é)nlinear
¢ AT At equations.
Solve for ri=0.
Use for: Use for:
* “Non-stiff” equations  “Stiff” equations
* Unsteady solutions * Time-marching to steady solutions

Higher-order methods can be constructed. (Runge Kutta, etc.)
MATLAB: ode45 (nonstiff), ode23s (stiff)

U You provide evaluation of Fi(¢))

THE -
UNIVERSITY
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Example: Kinetics

k1 dC
A+B = (C A
ko ' di " "
A+C = D dCx
W - "
dCe
4 — TI't—T"2
Initial conditions: Ca=1, C5=0.6. dgjf
Rate constants: k=1, k»=0.1. d—tD = T

¢ Plot concentrations as functions of time.

* requires solution of system of ODEs

¢ Determine the equilibrium composition.

* Use stoichiometry & mole balance

¢ How long to achieve 99% of equilibrium?
* find this entry in the ODE solution history.

U
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“Parabolic” PDEs

Parabolic PDEs are characterized primarily by
transient diffusion.

Transient diffusion equation
(constant diffusivity, I)

Transient temperature diffusion equation
(constant pressure, diffusivity)

Transient temperature diffusion equation

: . : : Cp—Q, —
(two-dimensional version of the above equation) Pep ot

U

THE -
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oo 2
— =11
o v¢+8¢

oT
Plp 5y = AVAT + s7

oT — \ 82_T + 82_T +
ox?  Oy? o7

Wednesday, April 11, 12
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Solving Time-Dependent PDEs

% — I‘82¢ |
ot 0x?
Spatial discretization:

¢ dic1—2¢i + ¢in

2 ™~ 2 ] €6 ) .C ;El
Ox Ax Time ““¢ ¥ &

v

S Time “r+Ar”’

)oY T, Gi—1 — 2¢0; + Qi1 .
ot Ax?
This is a system of coupled ODEs.
% = 7 Need BC inf i
at . eed to use InNformation...
0 — 2
ﬂ p— F¢1 ¢22 —I— ¢3 —|— 82,
ot Ax Solve using Matlab’s
Do ode45 or ode23s.
a¢n—1 ¢n—2__2¢n—1%_¢n
= I n—1,
ot Ax? + Sn—1
- % — 7 Need to use BC information...

OF UTAH
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Example |

(Dirichlet Boundary Conditions)

T; Txo TZTXL (‘)T 82T T(()’ t) = 0, BC at x=0
- - — = — T(1,t) = 0, BC at x=1
] 8t a 2 " iy
2 s e e e e, 2 X T(x,0) = ¢(x) Initial condition
A b 0 by 2
% . Analytical 4 —kr%at :
2 Given T(0,7), T(1 1) and 2 nla Z.tlcé T(x,t) =) Ape "™ “sin(krz) A, =2 / ¢(z) sin(kmz)dz
o TaOLfind T | oq  ooHom k=1 !
: ' o . . Applies at all
Nume.rlcal aT’L _ aTZ—l 2Tl _|_ TZ+1 “interior” Points
solution: Ot Ax? (i=2, ... n-1)
What do we do at the boundaries (i=1, i=n)?
T=T
? L oT] Ty — 217 + 15 T 17 + 1g T T T oT] QTQ;O — 317 + 15
— = (Y T p— p— o — =
Z ot Az 0 2 ° o ot Az
%
/ [ ]
2 G A similar procedure 07, 2T, — 31, + 11
— =
2 at x=L leads to: ot Ax?
1
x=0

Solve this problem for = [ 0, 240 | seconds given: ¢(z) = exp (—100($ - 0-3)2)
U o= — 104 m

THE 4 pcp
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I
KD
=~

oT
ot

—

Numerical 07T;
solution: Ot

UL
INVAARRRRRRNNNY

XO X:.XL

What do we do at the boundaries (i=1, i=n)?
dT

Solve this problem given So=£:=0 and the
same conditions as on the previous slide.

THLU

UNIVERSITY
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EmZL:ﬁL@_aT0—2T1+T2 Need to dr
ot A2 eliminate To. o o
4! 0T, o —T1 Do At i1
— = ——5— — — =1.
ot Ax? Az
x=0
Using the same analysis 07, 1,1 —"1, Q .
at x=1 (i=n)... ot Q A2 + Ax O ati=n.

Example 2

(Neumann Boundary Conditions)

or Bo, BC 0
0T 0 o,
or B, BC 1
a — L, at x=
8372 Ox 1,t
T(z,0) = ¢(z) Initial condition
o , _ Applies at all
— aTZ_l 2T7’2+ TZ+1 “interior” points
Az (i=2 ... n-1)
11 — 1o
= ——— =00 = Tp =11 — BAzx
Ax
Dirichlet BCs Neuman BCs
0.9+G - 'T::;T: H 09+
0.8} 0.8}
0.7+ 0.7 F
0.6} 0.6}
05 05

Wednesday, April 11, 12
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General Fluxes

0(x)

ot ¢y 0z

__109)  y—_aip (%)J

What have we assumed here!?

J) 1 —) 1
5’(:13)@ _ 1 ( )z+§ ( )’L—§ Applies at
at Cy AZ i=1...n.
B (z); — (z);—1  Ati=1l we need
(J)i—z = —a[D]; s Az to apply BCs
r)it1 — (x); At i=n we need
Bisy = —alDlyy =)

U
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to apply BCs

Az
l< >|
r __________________________ |
i Jz—% J’Il—i—% i
| ® — > —»> 0 '
- iy b, D108
T TSN N

NOTE: “i” denotes a spatial
index, not a species index.

Nspecies-1 Dimensional:

(x) - species mole fractions

(J) - species diffusive fluxes

[ D] - Fickian diffusion coefficient matrix

Wednesday, April 11, 12
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Example: Variable Effective Diffusivity

This represents n-1 0z, B _iv 7
coupled PDEs for the ot Cy ?
mole fractions, x;. — V-(D, ffvx’) assumptions?
— 1,€ 1
(933@-

Assume Neumann BCs: =0 @ z=0andz=L

0z

Given Djj, xi(t=0), how would you solve this!?

U

THE 4
UNIVERSITY
OF UTAH

Wednesday, April 11, 12

31



