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Nonlinear Equations
CHEN 6603
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Nonlinear Eqns. - Overview
Characteristics:
• May have 0 ... many solutions
• Solution methods are iterative and require an initial 

guess for the solution.
• Not guaranteed to find the solution, even if one exists!
‣ Initial guess can be critical to finding the solution.

‣ Bad initial guess may lead to no convergence, or convergence 
to a wrong (unintended) root.

• Solve for roots, f(x)=0.  If you want f(x)=a, then write in 
residual form, r(x)=f(x)-a and solve r(x)=0.

Solution Approaches
• Closed-Domain Methods
‣ Bracket the root and “home in” on it.

‣Quite simple & robust, but require you to bound the root.

‣ Can be problematic if you bound multiple roots...

• Open Domain Methods
‣ Require an initial guess for the solution, but not a bracket.

‣ More efficient, but less robust than closed-domain methods.

Write the equation 
in the form f(x)=0.

Closed-domain 
methods

• Bisection
• Regula Falsi

Yes

Open-domain 
methods

• Newton’s Method

• Secant Method

No

Is the root 
bracketed, a<x<b?
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Nonlinear Systems - Newton’s Method

f(x) = 0

Example: n=2 equations:

f(x) � f(x0) + J�x
We want solution at f(x)=0.  Therefore:

Taylor Series expansion of fi in terms of x:

This is a 
linear system 
of equations!

Newton’s 
Method

1. Calculate [J] & f(x) at the 
current guess for (x).

2. Solve for (Δx)
3. Update xi 

4. If not converged, go to 1.

Algorithm
Given f(x), x0, J.

x is a vector 
of unknowns.

Δx is a vector of corrections (updates).

J�x = �f(x0)

f1(x1, x2) = f1(x1,0, x2,0) +
⇥f1

⇥x1
(x1 � x1,0) +

⇥f1

⇥x2
(x2 � x2,0)

f2(x1, x2) = f2(x1,0, x2,0) +
⇥f2

⇥x1
(x1 � x1,0) +

⇥f2

⇥x2
(x2 � x2,0)

�

⇧⇧⇧⇤

f1(x1, x2, · · · , xn)
f2(x1, x2, · · · , xn)

...
fn(x1, x2, · · · , xn)

⇥

⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

0
0
...
0

⇥

⌃⌃⌃⌅

J =

2

66664

�f1(x0)
�x1

�f1(x0)
�x2

· · · �f1(x0)
�xn

�f2(x0)
�x1

�f2(x0)
�x2

· · · �f2(x0)
�xn

...
...

. . .
...

�fn(x0)
�x1

�fn(x0)
�x2

· · · �fn(x0)
�xn

3

77775

f

i

(x) ⇡ f

i

(x0) +
nX

j=1

@f

i

@x

j|{z}
Jij

(x
j

� x

j0| {z }
�xj

) +O(�x

2)
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Newton’s Method - Example
Original Equations:

Modified Equations:

Jacobian:

1
2
x3 + y = 4x

y = sin(x) exp(�x)

f1 =
1
2
x3 + y � 4x

f2 = y � sin(x) exp(�x)

[J ] =

⇤
�f1
�x

�f1
�y

�f2
�x

�f2
�y

⌅
=

�
3
2x2 � 4 1

� cos(x) exp(�x) + sin(x) exp(�x) 1

⇥
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Example - cont’d

k x y
0 -2 -4

1 -1.5183 -4.9635

2 -1.4631 -4.2932

3 -1.4611 -4.2848

4 -1.4611 -4.2848

x = �2, y = �4

x = �1.5183, y = �4.9635

1. Guess xi:

2. Calculate [J] & (f)

3. Solve for (∆)

4. Update xi 

[J ] =
⇤

2.0 1
�3.6439 1

⌅
(f) =

�
0.0

2.7188

⇥

(�) =
�

0.4817
�0.9635

⇥

f1 =
1
2
x3 + y � 4x

f2 = y � sin(x) exp(�x)
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Software Tools

MATLAB
• FZERO - good for single nonlinear equation, solves for x such that f(x)=0.

• FSOLVE - for systems of nonlinear equations, finds xi such that fj(xi)=0.
‣ requires the “optimization toolbox”

• FMINSEARCH - good for systems of nonlinear equations
‣ Searches for the minimum, not the zeros.

Excel
• Goal Seek - single variable

• Solver - multiple variables

Must provide a function to evaluate the residual.

Solve the last problem again in MATLAB…
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PDEs

ODEs

A
lg

eb
ra

ic
Eq

ua
tio

ns

Time-rate of 
change in T at a 
point in space.

Convection of T 
(velocity pushing 

it around)

T changes due 
to changes in p.

T changes 
due to 
viscous 
heating.

T changes 
due to 

thermal & 
species 

diffusion.

3-D rectangular coordinate system:

A
ssum

ptions

So
lut

ion

Solution

�cp
⇥T

⇥t
= ��cpu ·⇤T +

⇥p

⇥t
+ u ·⇤p + � : ⇤u�⇤ · q + sT

T changes 
from other 

sources 
(reaction, 
radiation, 

etc).

Assume:
1. Velocity is zero.
2. Pressure is constant.
3. T does not vary 

spatially.
4. sT = -hA/V (T-T∞) 

Analysis of PDEs

d2T

dx2
= �sT

�

Assume:
1. Velocity is zero.
2. Pressure is constant.
3. Steady-state.
4. q = -λ∇T (Fourier’s 

Law of conduction)
5. λ is constant.
6. One-dimensional

r =⇥i
�

�x
+⇥j

�

�y
+ ⇥k

�

�z

dT

dt
= � hA

�cpV
(T � T1)

8Wednesday, April 11, 12



Numerical Solutions to PDEs

For systems which have a time derivative (∂ϕ/∂t) 
• Convert the PDE into a system of ODEs

‣Method of Lines: “Discretize” in space. Then we are left with a 
system of ODEs.

‣Number of ODEs is dependent on spatial discretization.

For PDEs which do not have a time derivative 
(Elliptic PDEs):
• Called “boundary value problems”

• Convert to a big system of (nonlinear) equations.

• Number of equations depends on spatial discretization 
(next).

“Parabolic” PDE

⇥2�

⇥x2
+

⇥2�

⇥y2
= � s�

D�

⇥�

⇥t
= �

⇥2�

⇥x2
+ s�
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Elliptic PDEs
Here we will show examples primarily for

Boundary-Value ODEs

Elliptic PDE:

Boundary 
value ODE:

⇥2�

⇥x2
+

⇥2�

⇥y2
= � s�

D�

d2�

dx2
= � s�

D�
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z=z0 z=zL

φi φi+1φi-1

Discrete Calculus (1-D)

q = �D
d�

dz

q
i+

1
2
⇥ �D

i+
1
2

�i+1 � �i

�z

q
i� 1

2
⇥ �D

i� 1
2

�i � �i�1

�z

d�

dz

����
i+

1
2

=
�i+1 � �i

�z
+O(�z2)

Approximation for the derivative of 
φ at the midpoint of two points.

Δz

φi

q
i+

1
2

q
i� 1

2

Δz

Assume a flux, q, of the form:

We may approximate q as:
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d�

dz

����
i+

1
2

=
�i+1 � �i

�z
+O(�z2)

Second Derivatives

d2�

dz2

����
i

=
�i+1 � 2�i + �i�1

�z2
+O(�z2)

d2�

dz2

����
i

=

d�
dz

���
i+

1
2

� d�
dz

���
i� 1

2

�z
+O(�z2),

=
1

�z

⇥
�i+1 � �i

�z
� �i � �i�1

�z

⇤
+O(�z2)

Approximation for the 
second derivative, valid for 

uniformly spaced cells.

z=z0 z=zL

φi φi+1φi-1

Use the same approximation on 
the derivatives of φ to obtain:
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Example - Steady Diffusion

“Effective binary” or heat conduction: q = �D⇥�

Steady state, no convection: ⇥ · q = s

Constant diffusivity: ⇥2� = � s

D

One-dimensional:
d2�

dz2
= � s

D

d2�

dz2

����
i

=
�i+1 � 2�i + �i�1

�z2
+O(�z2)

We can apply this at all “interior” 
points.  At the boundaries, we 

must modify this....

�i+1 � 2�i + �i�1

�z2
= � si

D

z=z0 z=zL

φi φi+1φi-1

� · Ji =
si
Mi
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Dirichlet Boundary Conditions
If the solution variable is known at 
the boundary, then we call this a 
Dirichlet boundary condition.

At z0, φ=φz0.

At zL, φ=φzL.

Linear interpolation 
between “0” and “1”

This applies at all interior 
points,  2 ≤ i ≤ n-1.

�i+1 � 2�i + �i�1

�z2
= � si

D z=z0 z=zL

φi φi+1φi-1

φ = φz0
φ = φzL

applies at i=1.
�2 � 3�1

�z2
= �s1

D
� 2�z0

�z2

applies at i=n.
�n�1 � 3�n

�z2
= �sn

D
� 2�zL

�z2

Using the top 
equation,

Using the top 
equation,

�0 + �1

2
= �z0 ) �0 = 2�z0 � �1

�n+1 + �n

2
= �zL ) �n+1 = 2�zL � �n
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Neumann Boundary Conditions
If the derivative solution variable is 

known at the boundary, then we call 
this a Neumann boundary condition.

⇥n+1 � ⇥n

�z
= �L ⇥ ⇥n+1 = �L�z + ⇥n

⇥1 � ⇥0

�z
= �0 ⇥ ⇥0 = ⇥1 � �0�zAt i=1,

At i=n,

This applies at all interior 
points,  2 ≤ i ≤ n-1.

�i+1 � 2�i + �i�1

�z2
= � si

D

applies at i=1.�⇥1 + ⇥2

�z2
= �s1

D
� �0

�z

applies at i=n.
�⇥n + ⇥n�1

�z2
= �sn

D
� �L

�z

z=z0 z=zL

φi φi+1φi-1

d⇥

dz

����
z0

= �0
d⇥

dz

����
zL

= �L

Using the top 
equation,

Using the top 
equation,
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Example: Steady Conduction

Find T(z).

T (z = 0) = 0
dT

dz

����
z=L

= 0

Boundary 
conditions:

If it were species rather than 
temperature, then this looks like 

a “Diffusion-reaction balance”

Steps:

1. Write down the discrete equations for interior

2. Write discrete equations at the boundary.

3. Write the matrix to be solved.

4. Finally, go to Matlab to solve the problem.

s = exp

⇤
�

�
z � L

2

⇥2

�

⌅
d2T

dz2
= �s(z)

�

⇥ = 10�3

� = 10�3

L = 1
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Interior equations
(1 < i < n)

Left Boundary
(i = 1)

(must eliminate T0) T1 + T0

2
= T (z = 0) = 0

Right Boundary
(i = n)

(must eliminate Tn+1)

For 5 control 
volumes, we have:

Left boundary condition

Right boundary condition

si = exp

⇤
�

�
zi � L

2

⇥2

�

⌅

Tn�1 � 2Tn + Tn+1

�z2
= �sn

�

Ti�1 � 2Ti + Ti+1

�z2
= �si

�

Tn�1 � Tn

�z2
= �sn

�

�3T1 + T2

�z2
= �s1

�

T0 � 2T1 + T2

�z2
= �s1

�

Tn+1 � Tn

�z
=

dT

dz

����
z=L

= 0

2

66664

�3 1 0 0 0
1 �2 1 0 0
0 1 �2 1 0
0 0 1 �2 1
0 0 0 1 �1

3

77775

0

BBBB@

T1

T2

T3

T4

T5

1

CCCCA
= ��z2

�

0

BBBB@

s1
s2
s3
s4
s5

1

CCCCA
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Nonlinear BVPs
d2T

dx2
= ��

�
T 4 � T 4

�
⇥

Example:

d2T

dx2

����
i

⇥ Ti�1 � 2Ti + Ti+1

�x2

Options:
1. Leave Ti4 on the right hand side & try to solve the 

linear system (not a good option).

2. Solve the nonlinear system of equations using 
Newton’s method. 
• rewrite in residual form
• requires a Jacobian matrix
• This is the most general approach (big hammer)

3. Linearize the equation.

Nonlinear 
term

Ti�1 � 2Ti + Ti+1

�x2
= ��

�
T 4
i � T 4

1
�Discrete equation to solve 

at each “interior” point
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Linearization

Taylor series expansion about xo:

f(x) = f(xo) + f �(x0)(x� xo) +
1
2
f ��(xo)(x� xo)2 + · · · +

1
n!

f (n)(xo)(x� xo)n+1

Now y is linear with respect to x 
(nonlinear with respect to xo).

Example: y = 5x3 � 2x

y ⇥ 5x3
o � 2xo +

�
15x2

o � 2
⇥
(x� xo)

= �10x3
o + (15x2

o � 2)x

x =
y + 10x3

o

15x2
o � 2

Example:  Solve for x such that y=2.

1. Guess xo. 
2. Calculate new value for x.
3. if |x-xo| > ε then xo=x, return 

to step 2.  Otherwise, done!

k xo x
1 1 0.9231

2 0.9231 0.9151

3 0.9151 0.9150

Exercise: what happens when we 
change our initial guess to x=0? −1 −0.5 0 0.5 1

−3

−2

−1

0

1

2

3
k=1

x

y

 

 

f(x)
xo
xnew

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3
k=2

x

y

 

 

f(x)
xo
xnew

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3
k=3

x

y

 

 

f(x)
xo
xnew
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Linearization for Nonlinear BVPs
Ti�1 � 2Ti + Ti+1

�x2
= ��

�
T 4

i � T 4
⇥

⇥
T 4

i ⇥ (T �
i )4 + 4(T �

i )3(Ti � T �
i )

Linearize Ti4 term about Ti*:

Boundary conditions 
implemented as 

previously discussed.

1. Guess the solution values (Ti*)

2. Update the LHS matrix and RHS 
vector given these values for Ti*.

3. Solve the system of equations for Ti.

4. If  ||Ti-Ti*|| > ε then set Ti* = Ti and 
return to step 2.  Otherwise, we have 
the answer.

Ti�1 � 2Ti + Ti+1

�x2
= ��

�
(T ⇥i )4 + 4(T ⇥i )3(Ti � T ⇥i )� T 4

⇤
⇥

You choose the norm 
you want (L2, L∞)

Applies to 
all interior 

points.

1
�x2

Ti�1 �
✓

2
�x2

+ 4�(T ⇤i )3
◆

Ti +
1

�x2
Ti+1 = �

⇥
3(T ⇤i )4 + T 4

1
⇤

2

666664

BC1
1

�x

2 �
�

2
�x

2 + 4�(T ⇤2 )3
�

1
�x

2 0
. . . . . . . . .
0 1

�x

2 �
�

2
�x

2 + 4�(T ⇤
n�1)3

�
1

�x

2

BC
n

3

777775

0

BBBBB@

T1

T2
...

T
n�1

T
n

1

CCCCCA
=

0

BBBBB@

bc1

�
⇥
3(T ⇤2 )4 + T 4

1
⇤

...
�

⇥
3(T ⇤

n�1)4 + T 4
1

⇤

bc
n

1

CCCCCA
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“Elliptic” PDEs
In chemical engineering applications, elliptic PDEs 
typically arise from steady-state diffusion problems. �2� = f(⇧x,�)

⇤2�

⇤x2
+

⇤2�

⇤y2
= f(x, y,�)

Second-order 
discretization:

�i�1,j � 2�i,j + �i+1,j

�x2
+

�i,j�1 � 2�i,j + �i,j+1

�y2
= f(xi,j , yi,j ,�i,j)

i, j

i, j + 1

i, j � 1

i + 1, j + 1

i� 1, j � 1

i� 1, j i + 1, j

i� 1, j + 1

i + 1, j � 1

Applies at all 
“interior” points.

• At i=1, and i=nx apply x boundary conditions.

• At j=1, and j=ny apply y boundary conditions.
1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

1 2 3 4

8

12

16

765

9

13

10

14 15

11

Variable numbering (4x4 grid)
• (x,y) layout
• solution index (eqn #) layout

two-dimensional 
rectangular coordinates
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�i�1,j � 2�i,j + �i+1,j

�x2
+

�i,j�1 � 2�i,j + �i,j+1

�y2
= f(xi,j , yi,j ,�i,j)

1 2 3 4

8

12

16

765

9

13

10

14 15

11

Note: if f(x,y) depends 
on ϕ then this is a 

system of nonlinear 
equations!

2

66666666666666666666666666666664

BC ?? 0 0 ?? 0 0 0 0 0 0 0 0 0 0 0
1

�x

2 � 2
�x

2
1

�x

2 0 0 ?? 0 0 0 0 0 0 0 0 0 0
0 1

�x

2 � 2
�x

2
1

�x

2 0 0 ?? 0 0 0 0 0 0 0 0 0
0 0 ?? BC 0 0 0 ?? 0 0 0 0 0 0 0 0
1

�y

2 0 0 0 � 2
�x

2 ?? 0 0 1
�y

2 0 0 0 0 0 0 0

0 1
�y

2 0 0 1
�x

2 �2
⇣

1
�x

2 + 1
�y

2

⌘
1

�x

2 0 0 1
�y

2 0 0 0 0 0 0

0 0 1
�y

2 0 0 1
�x

2 �2
⇣

1
�x

2 + 1
�y

2

⌘
1

�x

2 0 0 1
�y

2 0 0 0 0 0

0 0 0 1
�y

2 0 0 ?? � 2
�y

2 0 0 0 1
�y

2 0 0 0 0
0 0 0 0 1

�y

2 0 0 0 � 2
�y

2 ?? 0 0 1
�y

2 0 0 0

0 0 0 0 0 1
�y

2 0 0 1
�x

2 �2
⇣

1
�x

2 + 1
�y

2

⌘
1

�x

2 0 0 1
�y

2 0 0

0 0 0 0 0 0 1
�y

2 0 0 1
�x

2 �2
⇣

1
�x

2 + 1
�y

2

⌘
1

�x

2 0 0 1
�y

2 0

0 0 0 0 0 0 0 1
�y

2 0 0 ?? � 2
�y

2 0 0 0 1
�y

2

0 0 0 0 0 0 0 0 ?? 0 0 0 BC ?? 0 0
0 0 0 0 0 0 0 0 0 ?? 0 0 1

�x

2
�2
�x

2
1

�x

2 0
0 0 0 0 0 0 0 0 0 0 ?? 0 0 1

�x

2
�2
�x

2
1

�x

2

0 0 0 0 0 0 0 0 0 0 0 ?? 0 0 ?? BC

3

77777777777777777777777777777775

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

�1

�2

�3

�4

�5

�6

�7

�8

�9

�10

�11

�12

�13

�14

�15

�16

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

bc1
f(x2, y2,�2) + bc2
f(x3, y3,�3) + bc3

bc4
f(x5, y5,�5) + bc5

f(x6, y6,�6)
f(x7, y7,�7)

f(x8, y8,�8) + bc8
f(x9, y9,�9) + bc9
f(x10, y10,�10)
f(x11, y11,�11)

f(x12, y12,�12) + bc12
f(x7, y7,�7) + bc13

f(x14, y14,�14) + bc14
f(x15, y15,�15) + bc15

bc16

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA
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Parabolic PDEs

⇥cp
⇤T

⇤t
= �

⇤2T

⇤x2
+ sT
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Ordinary Differential Equations
(ODEs)

Explicit: Implicit:

Use for:
•  “Non-stiff” equations
•  Unsteady solutions

Use for:
•  “Stiff” equations
•  Time-marching to steady solutions

Higher-order methods can be constructed.  (Runge Kutta, etc.)

MATLAB:  ode45 (nonstiff), ode23s (stiff)

You provide evaluation of Fi(φj)

d�i

dt
= Fi(�j)

�n+1
i � �n

i

�t
= Fi(�n

j ) +O(�t)
�n+1

i � �n
i

�t
= Fi(�n+1

j ) +O(�t)

ri = Fi(�n+1
j )� �n+1 � �n

�t

A coupled system 
of ODEs:

System of 
nonlinear 
equations.  

Solve for ri = 0.
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Example: Kinetics
A + B

k1� C

A + C
k2� D

dCA

dt
= �r1 � r2

dCB

dt
= �r1

dCC

dt
= r1 � r2

dCD

dt
= r2

Plot concentrations as functions of time.
• requires solution of system of ODEs

Determine the equilibrium composition.
• Use stoichiometry & mole balance

How long to achieve 99% of equilibrium?
• find this entry in the ODE solution history.

Initial conditions:  CA=1, CB=0.6.
Rate constants:     k1=1, k2=0.1.
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“Parabolic” PDEs
Parabolic PDEs are characterized primarily by 

transient diffusion.

⇥�

⇥t
= ��2� + s�

⇥cp
⇤T

⇤t
= ��2T + sT

⇥cp
⇤T

⇤t
= �

�
⇤2T

⇤x2
+

⇤2T

⇤y2

⇥
+ sT

Transient diffusion equation
(constant diffusivity, Γ)

Transient temperature diffusion equation
(constant pressure, diffusivity)

Transient temperature diffusion equation
(two-dimensional version of the above equation)
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Solving Time-Dependent PDEs
The “Method of Lines”

Spatial Coupling through
 the spatial derivative

Time “t”

Time “t+Δt”

i
i+1

i-1

i
i+1

i-1

O
D

E 
tim

e 
in

te
gr

at
or

Spatial discretization:

⇥�

⇥t
= �

⇥2�

⇥x2
+ s

This is a system of coupled ODEs.

⇥2�

⇥x2
⇥ �i�1 � 2�i + �i+1

�x2

Solve using Matlab’s 
ode45 or ode23s.

⇥�i

⇥t
= �i

�i�1 � 2�i + �i+1

⇥x2
+ si

Need to use BC information...

Need to use BC information...

⇥�1

⇥t
= ?

⇥�2

⇥t
= �

�1 � 2�2 + �3

⇥x2
+ s2,

... =
...

⇥�n�1

⇥t
= �

�n�2 � 2�n�1 + �n

⇥x2
+ sn�1,

⇥�n

⇥t
= ?
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Example 1
(Dirichlet Boundary Conditions)

Given T(0,t), T(1,t) and 
T(x,0), find T(x,t).

What do we do at the boundaries (i=1, i=n)?

Ak = 2
� 1

0
⇥(x) sin(k�x)dx

Analytical 
solution:

T (x, t) =
⇥�

k=1

Ake�k2⇥2�t sin(k�x)

⇥T

⇥t
= �

⇥2T

⇥x2

T (0, t) = 0,

T (1, t) = 0,

T (x, 0) = �(x)

BC at x=0

BC at x=1

Initial condition

Solve this problem for t = [ 0, 240 ] seconds given: �(x) = exp
�
�100(x� 0.3)2

⇥

� =
⇥

⇤cp
= 10�4 m2

s

x=0 x=1

φ
i
φ

i+1
φ

i-1

T = Tx0
T = TxL

Numerical 
solution:

Applies at all 
“interior” points 

(i=2, ... ,n-1)

⇥Ti

⇥t
= �

Ti�1 � 2Ti + Ti+1

�x2

⇥T1

⇥t
= �

T0 � 2T1 + T2

�x2

⇥T1

⇥t
= �

2Tx0 � 3T1 + T2

�x2
Tx0 =

T1 + T0

2
⇥ T0 = 2Tx0 � T1

⇥Tn

⇥t
= �

2TxL � 3Tn + Tn�1

�x2

A similar procedure 
at x=L leads to:

x=0

T=T
L

T
1
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Example 2
(Neumann Boundary Conditions)

What do we do at the boundaries (i=1, i=n)?

⇥T

⇥t
= �

⇥2T

⇥x2

⇥T1

⇥t
= �

T0 � 2T1 + T2

�x2

Solve this problem given β0=βL=0 and the 
same conditions as on the previous slide.

BC at x=0

BC at x=1

Initial condition

⌅T

⌅x

����
0,t

= �0,

⌅T

⌅x

����
1,t

= �L,

T (x, 0) = ⇥(x)

Need to 
eliminate T0.

Numerical 
solution:

Applies at all 
“interior” points 

(i=2 ... n-1)

⇥Ti

⇥t
= �

Ti�1 � 2Ti + Ti+1

�x2
x=x

0
x=x

L

φ
i
φ
i+1

φ
i-1

dT

dx

����
x=0

= �0
dT

dx

����
x=L

= �L

x=0

T
1

dT

dx

����
x=L

= �L dT

dx

����
x=0

=
T1 � T0

�x
= �0 ⇥ T0 = T1 � �0�x

⇤T1

⇤t
= �

�
T2 � T1

�x2
� ⇥0

�x

⇥
at i=1.

at i=n.
Using the same analysis 

at x=1 (i=n)...
⇤Tn

⇤t
= �

Tn�1 � Tn

�x2
+

�

�x
⇥L
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General Fluxes
�(x)
�t

= � 1
ct

�(J)
�z

(J) = �ct[D]
�

�x

�z

⇥

�(x)i

�t
= � 1

ct

(J)
i+

1
2
� (J)

i� 1
2

�z

nspecies-1 Dimensional:
(x) - species mole fractions

(J) - species diffusive fluxes

[D] - Fickian diffusion coefficient matrix

φ
i

φ
i+1

φ
i-1

J
i� 1

2
J

i+
1
2

�z

Applies at 
i=1...n.

At i=n we need 
to apply BCs

At i=1 we need 
to apply BCs

What have we assumed here?

NOTE:  “i” denotes a spatial 
index, not a species index.

(J)i+ 1
2
= �ct[D]i+ 1

2

(x)i+1 � (x)i
�z

(J)i� 1
2
= �ct[D]i� 1

2

(x)i � (x)i�1

�z
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�xi

�t
= � 1

ct
⇤ · Ji

= ⇤ · (Di,eff⇤xi)

What are the 
assumptions?

This represents ns-1 
coupled PDEs for the 

mole fractions, xi.

Assume Neumann BCs:
�xi

�z
= 0 @ z=0 and z=L 

Given Ðij, xi(t=0), how would you solve this?

Example:  Variable Effective Diffusivity
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