Topics

Nonlinear Equations
Analysis of PDEs
Elliptic PDEs \& Boundary-Value ODEs Parabolic PDEs \& Initial Value ODEs

Nonlinear Equations

CHEN 6603

Nonlinear Eqns. - Overview

Characteristics:

- May have 0 ... many solutions
- Solution methods are iterative and require an initial guess for the solution.
- Not guaranteed to find the solution, even if one exists!
- Initial guess can be critical to finding the solution.
- Bad initial guess may lead to no convergence, or convergence to a wrong (unintended) root.
- Solve for roots, $f(x)=0$. If you want $f(x)=a$, then write in residual form, $r(x)=f(x)-a$ and solve $r(x)=0$.

Solution Approaches

- Closed-Domain Methods
- Bracket the root and "home in" on it.
- Quite simple \& robust, but require you to bound the root.
- Can be problematic if you bound multiple roots...
- Open Domain Methods
- Require an initial guess for the solution, but not a bracket.
- More efficient, but less robust than closed-domain methods.

Noninear Systenns - Newton's Method

$$
\underset{\substack{\mathbf{x} \text { is a vector } \\
\text { of unknowns. }}}{\mathbf{f}(\mathbf{x})=0}\left(\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Taylor Series expansion of f_{i} in terms of \mathbf{x} :

$$
f_{i}(\mathbf{x}) \approx f_{i}\left(\mathbf{x}_{0}\right)+\sum_{j=1}^{n} \underbrace{\frac{\partial f_{i}}{\partial x_{j}}}_{J_{i j}} \underbrace{x_{j}-x_{j 0}}_{\Delta x_{j}})+\mathcal{O}\left(\Delta x^{2}\right)
$$

$$
\begin{aligned}
& \text { Example: } n=2 \text { equations: } \\
& \begin{aligned}
f_{1}\left(x_{1}, x_{2}\right) & =f_{1}\left(x_{1,0}, x_{2,0}\right)+\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}-x_{1,0}\right)+\frac{\partial f_{1}}{\partial x_{2}}\left(x_{2}-x_{2,0}\right) \\
f_{2}\left(x_{1}, x_{2}\right) & =f_{2}\left(x_{1,0}, x_{2,0}\right)+\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}-x_{1,0}\right)+\frac{\partial f_{2}}{\partial x_{2}}\left(x_{2}-x_{2,0}\right)
\end{aligned}
\end{aligned}
$$

Algorithm

Given $f(\mathbf{x}), \mathbf{x}_{0}, \mathbf{J}$.

1. Calculate $[\mathbf{J}] \& f(\mathbf{x})$ at the current guess for (\mathbf{x}).
2. Solve for ($\Delta \mathbf{x}$)
3. Update x_{i}
4. If not converged, go to 1 .
$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{0}\right)+\mathbf{J} \Delta \mathbf{x} \quad \Delta \mathrm{x}$ is a vector of corrections (updates).

Newton's Method - Example

Original Equations: $\frac{1}{2} x^{3}+y=4 x$

$$
y=\sin (x) \exp (-x)
$$

Modified Equations: $f_{1}=\frac{1}{2} x^{3}+y-4 x$

$$
f_{2}=y-\sin (x) \exp (-x)
$$

Jacobian: $\quad[J]=\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}\end{array}\right]=\left[\begin{array}{cc}\frac{3}{2} x^{2}-4 & 1 \\ -\cos (x) \exp (-x)+\sin (x) \exp (-x) & 1\end{array}\right]$

Example - cont'd

1. Guess x_{i} : $\quad x=-2, \quad y=-4$

$$
\begin{aligned}
& f_{1}=\frac{1}{2} x^{3}+y-4 x \\
& f_{2}=y-\sin (x) \exp (-x)
\end{aligned}
$$

2. Calculate $[J] \&(f) \quad[J]=\left[\begin{array}{cc}2.0 & 1 \\ -3.6439 & 1\end{array}\right]$
$(f)=\binom{0.0}{2.7188}$
3. Solve for (Δ)

$$
(\Delta)=\binom{0.4817}{-0.9635}
$$

4. Update x_{i}

$$
x=-1.5183, \quad y=-4.9635
$$

k	x	y
0	-2	-4
1	$-I .5 I 83$	-4.9635
2	$-I .463 I$	-4.2932
3	$-I .46 I I$	-4.2848
4	$-I .46 I I$	-4.2848

Software Tools

Must provide a function to evaluate the residual.
M MATLAB

- FZERO - good for single nonlinear equation, solves for x such that $f(x)=0$.
- FSOLVE - for systems of nonlinear equations, finds x_{i} such that $f_{i}\left(x_{i}\right)=0$.
- requires the "optimization toolbox"
- FMINSEARCH - good for systems of nonlinear equations
- Searches for the minimum, not the zeros.
© Excel
- Goal Seek - single variable
- Solver - multiple variables

Solve the last problem again in MATLAB...

Analysis of PDEs

$$
\text { 3-D rectangular coordinate system: } \quad \nabla=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}
$$

Assume:

I. Velocity is zero.
2. Pressure is constant.
3. Steady-state.
4. $\mathbf{q}=-\lambda \nabla T$ (Fourier's Law of conduction)
5. λ is constant.
6. One-dimensional

$$
\frac{\mathrm{d}^{2} T}{\mathrm{~d} x^{2}}=-\frac{s_{T}}{\lambda}
$$

Assume:

I. Velocity is zero.
2. Pressure is constant.
3. T does not vary spatially.
4. $s_{T}=-h A / V\left(T-T_{\infty}\right)$

ODEs

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-\frac{h A}{\rho c_{p} V}\left(T-T_{\infty}\right)
$$

Numerical Solutions to PDEs

\neq For systems which have a time derivative ($\partial \phi / \partial t$)

- Convert the PDE into a system of ODEs
- Method of Lines:"Discretize" in space. Then we are left with a system of ODEs.
- Number of ODEs is dependent on spatial discretization.

For PDEs which do not have a time derivative (Elliptic PDEs):

- Called "boundary value problems"

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-\frac{s_{\phi}}{D_{\phi}}
$$

- Convert to a big system of (nonlinear) equations.
- Number of equations depends on spatial discretization (next).

Elliptic PDEs

Here we will show examples primarily for Boundary-Value ODEs

Elliptic PDE: $\quad \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-\frac{s_{\phi}}{D_{\phi}}$
$\begin{gathered}\text { Boundary } \\ \text { value ODE: }\end{gathered} \quad \frac{\mathrm{d}^{2} \phi}{\mathrm{~d} x^{2}}=-\frac{s_{\phi}}{D_{\phi}}$

Discrete Calculus (I-D)

Assume a flux, q, of the form:

$$
q=-D \frac{\mathrm{~d} \phi}{\mathrm{~d} z}
$$

We may approximate q as:

$$
\begin{aligned}
& q_{i+\frac{1}{2}} \approx-D_{i+\frac{1}{2}} \frac{\phi_{i+1}-\phi_{i}}{\Delta z} \\
& q_{i-\frac{1}{2}} \approx-D_{i-\frac{1}{2}} \frac{\phi_{i}-\phi_{i-1}}{\Delta z}
\end{aligned}
$$

Approximation for the derivative of ϕ at the midpoint of two points.

Second Derivatives

$$
\left.\frac{\mathrm{d} \phi}{\mathrm{~d} z}\right|_{i+\frac{1}{2}}=\frac{\phi_{i+1}-\phi_{i}}{\Delta z}+\mathcal{O}\left(\Delta z^{2}\right)
$$

Use the same approximation on
 the derivatives of ϕ to obtain:

$$
\begin{aligned}
\left.\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} z^{2}}\right|_{i} & =\frac{\left.\frac{\mathrm{d} \phi}{\mathrm{~d} z}\right|_{i+\frac{1}{2}}-\left.\frac{\mathrm{d} \phi}{\mathrm{~d} z}\right|_{i-\frac{1}{2}}}{\Delta z}+\mathcal{O}\left(\Delta z^{2}\right), \\
& =\frac{1}{\Delta z}\left[\frac{\phi_{i+1}-\phi_{i}}{\Delta z}-\frac{\phi_{i}-\phi_{i-1}}{\Delta z}\right]+\mathcal{O}\left(\Delta z^{2}\right)
\end{aligned}
$$

$$
\left.\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} z^{2}}\right|_{i}=\frac{\phi_{i+1}-2 \phi_{i}+\phi_{i-1}}{\Delta z^{2}}+\mathcal{O}\left(\Delta z^{2}\right)
$$

Approximation for the second derivative, valid for uniformly spaced cells.

Example - Steady Diffusion

Steady state, no convection: $\nabla \cdot \mathbf{q}=s$

$$
\nabla \cdot \mathbf{J}_{i}=\frac{s_{i}}{M_{i}}
$$

"Effective binary" or heat conduction: $\mathbf{q}=-D \nabla \phi$

$$
\begin{array}{r}
\text { Constant diffusivity: } \nabla^{2} \phi=-\frac{s}{D} \\
\text { One-dimensional: } \frac{\mathrm{d}^{2} \phi}{\mathrm{~d} z^{2}}=-\frac{s}{D} \\
\left.\frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} z^{2}}\right|_{i}=\frac{\phi_{i+1}-2 \phi_{i}+\phi_{i-1}}{\Delta z^{2}}+\mathcal{O}\left(\Delta z^{2}\right)
\end{array}
$$

$$
\frac{\phi_{i+1}-2 \phi_{i}+\phi_{i-1}}{\Delta z^{2}}=-\frac{s_{i}}{D}
$$

We can apply this at all "interior" points. At the boundaries, we must modify this....

Dirichlet Boundary Conditions

If the solution variable is known at the boundary, then we call this a Dirichlet boundary condition.

$$
\frac{\phi_{i+1}-2 \phi_{i}+\phi_{i-1}}{\Delta z^{2}}=-\frac{s_{i}}{D} \quad \begin{gathered}
\text { This applies at all interior } \\
\text { points, } 2 \leq i \leq n-1 .
\end{gathered}
$$

Linear interpolation

$$
\text { between " } 0 \text { " and " } 1 \text { " }
$$

At $z_{0}, \phi=\phi_{z 0} . \quad \frac{\phi_{0}+\phi_{1}}{2}=\phi_{z_{0}} \Rightarrow \phi_{0}=2 \phi_{z_{0}}-\phi$

$$
\begin{aligned}
& \text { Using the top } \\
& \text { equation, }
\end{aligned} \frac{\phi_{2}-3 \phi_{1}}{\Delta z^{2}}=-\frac{s_{1}}{D}-\frac{2 \phi_{z_{0}}}{\Delta z^{2}} \quad \text { applies at } i=1 .
$$

At $z_{L}, \phi=\phi_{z L} . \frac{\phi_{n+1}+\phi_{n}}{2}=\phi_{z_{L}} \Rightarrow \phi_{n+1}=2 \phi_{z_{L}}-\phi_{n}$

$$
\begin{aligned}
& \text { Using the top } \\
& \text { equation, }
\end{aligned} \frac{\phi_{n-1}-3 \phi_{n}}{\Delta z^{2}}=-\frac{s_{n}}{D}-\frac{2 \phi_{z_{L}}}{\Delta z^{2}} \text { applies at } i=n .
$$

Neumann Boundary Conditions

If the derivative solution variable is known at the boundary, then we call this a Neumann boundary condition.

$$
\frac{\phi_{i+1}-2 \phi_{i}+\phi_{i-1}}{\Delta z^{2}}=-\frac{s_{i}}{D} \quad \begin{gathered}
\text { This applies at all interior } \\
\text { points, } 2 \leq i \leq n-1
\end{gathered}
$$

$$
\text { At } i=1, \quad \frac{\phi_{1}-\phi_{0}}{\Delta z}=\beta_{0} \Rightarrow \phi_{0}=\phi_{1}-\beta_{0} \Delta z
$$

$$
\begin{aligned}
& \text { Using the top } \\
& \text { equation, }
\end{aligned} \frac{-\phi_{1}+\phi_{2}}{\Delta z^{2}}=-\frac{s_{1}}{D}-\frac{\beta_{0}}{\Delta z} \quad \text { applies at } i=1 .
$$

$$
\text { At } i=n, \quad \frac{\phi_{n+1}-\phi_{n}}{\Delta z}=\beta_{L} \Rightarrow \phi_{n+1}=\beta_{L} \Delta z+\phi_{n}
$$

$$
\begin{aligned}
& \text { Using the top } \\
& \text { equation, }
\end{aligned} \frac{-\phi_{n}+\phi_{n-1}}{\Delta z^{2}}=-\frac{s_{n}}{D}-\frac{\beta_{L}}{\Delta z} \text { applies at } i=n .
$$

Example: Steady Conduction

If it were species rather than temperature, then this looks like a "Diffusion-reaction balance"

$$
\frac{\mathrm{d}^{2} T}{\mathrm{~d} z^{2}}=-\frac{s(z)}{\lambda}
$$

$$
s=\exp \left(-\frac{\left(z-\frac{L}{2}\right)^{2}}{\gamma}\right)
$$

Boundary conditions:

$$
\begin{aligned}
T(z=0) & =0 \\
\left.\frac{\mathrm{~d} T}{\mathrm{~d} z}\right|_{z=L} & =0
\end{aligned}
$$

Find $T(z)$.

Steps:

I. Write down the discrete equations for interior
2. Write discrete equations at the boundary.
3. Write the matrix to be solved.
4. Finally, go to Matlab to solve the problem.

Interior equations $(1<i<n)$
$\frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta z^{2}}=-\frac{s_{i}}{\lambda}$
$s_{i}=\exp \left(-\frac{\left(z_{i}-\frac{L}{2}\right)^{2}}{\gamma}\right)$

Left Boundary
($i=1$)

$$
\begin{aligned}
& \frac{T_{0}-2 T_{1}+T_{2}}{\Delta z^{2}}=- \\
& \frac{-3 T_{1}+T_{2}}{\Delta z^{2}}=-\frac{s_{1}}{\lambda}
\end{aligned}
$$

$\begin{array}{r}\text { Right Boundary } \\ \quad(i=n)\end{array} \frac{T_{n-1}-2 T_{n}+T_{n+1}}{\Delta z^{2}}=-\frac{s_{n}}{\lambda} \quad\left(\right.$ must eliminate $\left.T_{n+1}\right) \frac{T_{n+1}-T_{n}}{\Delta z}=\left.\frac{\mathrm{d} T}{\mathrm{~d} z}\right|_{z=L}=0$

$$
\frac{T_{n-1}-T_{n}}{\Delta z^{2}}=-\frac{s_{n}}{\lambda}
$$

Left boundary condition
For 5 control volumes, we have:

$$
\left[\begin{array}{ccccc}
-3 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]\left(\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5}
\end{array}\right)=-\frac{\Delta z^{2}}{\lambda}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
s_{5}
\end{array}\right)
$$

Nonlinear BVPs

$$
\begin{aligned}
& \text { Example: } \frac{\mathrm{d}^{2} T}{\mathrm{~d} x^{2}}=-\alpha\left(T^{4}-T_{\infty}^{4}\right) \\
& \qquad\left.\frac{\mathrm{d}^{2} T}{\mathrm{~d} x^{2}}\right|_{i} \approx \frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}}
\end{aligned}
$$

$\begin{aligned} & \text { Discrete equation to solve } \\ & \text { at each "interior" point }\end{aligned} \frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}}=-\alpha\left(T_{i}^{4}-T_{\infty}^{4}\right)$

Options:

I. Leave $T_{i}{ }^{4}$ on the right hand side \& try to solve the linear system (not a good option).
2. Solve the nonlinear system of equations using Newton's method.

- rewrite in residual form
- requires a Jacobian matrix
- This is the most general approach (big hammer)

3. Linearize the equation.

Linearization

Example: $y=5 x^{3}-2 x$

Taylor series expansion about x_{0} :

$$
\begin{array}{rlr}
f(x)=f\left(x_{o}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{o}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{o}\right)\left(x-x_{o}\right)^{2}+\cdots+\frac{1}{n!} f^{(n)}\left(x_{o}\right)\left(x-x_{o}\right)^{n+1} \\
y & \approx 5 x_{o}^{3}-2 x_{o}+\left(15 x_{o}^{2}-2\right)\left(x-x_{o}\right) & \quad \text { Now } y \text { is linear with respect to } x \\
& =-10 x_{o}^{3}+\left(15 x_{o}^{2}-2\right) x & \text { (nonlinear with respect to } \left.x_{o}\right) .
\end{array}
$$

Example: Solve for x such that $y=2 . \quad x=\frac{y+10 x_{o}^{3}}{15 x_{o}^{2}-2}$
I. Guess x_{0}.
2. Calculate new value for x.
3. if $\left|x-x_{o}\right|>\varepsilon$ then $x_{o}=x$, return to step 2. Otherwise, done!

k	x_{0}	x
1	1	0.9231
2	0.9231	0.9151
3	0.9151	0.9150

Exercise: what happens when we change our initial guess to $x=0$?

Linearization for Nonlinear BVPs

$$
\begin{array}{cc}
\frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}}=-\alpha\left(T_{i}^{4}-T_{\infty}^{4}\right) & \text { Linearize } T_{i}^{4} \text { term about } T_{i}^{*}: \\
\frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}}=-\alpha\left[\left(T_{i}^{*}\right)^{4}+4\left(T_{i}^{*}\right)^{3}\left(T_{i}-T_{i}^{*}\right)-T_{\infty}^{4}\right]
\end{array}
$$

$$
\frac{1}{\Delta x^{2}} T_{i-1}-\left(\frac{2}{\Delta x^{2}}+4 \alpha\left(T_{i}^{*}\right)^{3}\right) T_{i}+\frac{1}{\Delta x^{2}} T_{i+1}=\alpha\left[3\left(T_{i}^{*}\right)^{4}+T_{\infty}^{4}\right]
$$

Applies to all interior points.
$\left[\begin{array}{cccc}B C_{1} & & & \\ \frac{1}{\Delta x^{2}} & -\left(\frac{2}{\Delta x^{2}}+4 \alpha\left(T_{2}^{*}\right)^{3}\right) & \frac{1}{\Delta x^{2}} & 0 \\ \ddots & \ddots & \ddots & \\ 0 & \frac{1}{\Delta x^{2}} & -\left(\frac{2}{\Delta x^{2}}+4 \alpha\left(T_{n-1}^{*}\right)^{3}\right) & \frac{1}{\Delta x^{2}} \\ & & B C_{n}\end{array}\right]\left(\begin{array}{c}T_{1} \\ T_{2} \\ \vdots \\ T_{n-1} \\ T_{n}\end{array}\right)=\left(\begin{array}{c}b c_{1} \\ \alpha\left[3\left(T_{2}^{*}\right)^{4}+T_{\infty}^{4}\right] \\ \vdots \\ \alpha\left[3\left(T_{n-1}^{*}\right)^{4}+T_{\infty}^{4}\right] \\ b c_{n}\end{array}\right)$

Boundary conditions implemented as previously discussed.
I. Guess the solution values $\left(T_{i}^{*}\right)$
2. Update the LHS matrix and RHS vector given these values for T_{i}^{*}.
3. Solve the system of equations for T_{i}.
4. If $\left\|T_{i-} T_{i}^{*}\right\|>\varepsilon$ then set $T_{i}^{*}=T_{i}$ and return to step 2 . Otherwise, we have

You choose the norm you want $\left(L_{2}, L_{\infty}\right)$ the answer.

"Elliptic" PDEs

In chemical engineering applications, elliptic PDEs typically arise from steady-state diffusion problems.

$$
\nabla^{2} \phi=f(\vec{x}, \phi)
$$

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=f(x, y, \phi)
$$

two-dimensional
rectangular coordinates

Second-order discretization:

$$
\frac{\phi_{i-1, j}-2 \phi_{i, j}+\phi_{i+1, j}}{\Delta x^{2}}+\frac{\phi_{i, j-1}-2 \phi_{i, j}+\phi_{i, j+1}}{\Delta y^{2}}=f\left(x_{i, j}, y_{i, j}, \phi_{i, j}\right)
$$

- At $i=1$, and $i=n_{x}$ apply x boundary conditions.
- At $j=1$, and $j=n_{y}$ apply y boundary conditions.
$\frac{\phi_{i-1, j}-2 \phi_{i, j}+\phi_{i+1, j}}{\Delta x^{2}}+\frac{\phi_{i, j-1}-2 \phi_{i, j}+\phi_{i, j+1}}{\Delta y^{2}}=f\left(x_{i, j}, y_{i, j}, \phi_{i, j}\right)$
$\begin{array}{cccc}0 & O & O & O \\ 13 & 14 & 15 & 16\end{array}$
Note: if $f(x, y)$ depends
on ϕ then this is a system of nonlinear equations!

$B C$??	0	0	??	0	0	0	0	0	0	0	0	0	0	0			
$\frac{1}{\Delta x^{2}}$	$-\frac{2}{\Delta x^{2}}$	$\frac{1}{\Delta x_{2}^{2}}$	0	0	??	0	0	0	0	0	0	0	0	0	0	$\left(\phi_{1}\right)$		$b c_{1}$
0	$\frac{1}{\Delta x^{2}}$	$-\frac{2}{\Delta x^{2}}$	$\frac{1}{\Delta x^{2}}$	0	0	??	0	0	0	0	0	0	0	0	0	${ }^{\phi_{1}}$		$f\left(x_{2}, y_{2}, \phi_{2}\right)+b c_{2}$
0	${ }_{0}{ }^{\text {a }}$	$\stackrel{\Delta x^{2}}{ }$	$\stackrel{\Delta x^{2}}{ }{ }^{\text {c }}$	0	0	0	??	0	0	0	0	0	0	0	0	ϕ_{3}		$f\left(x_{3}, y_{3}, \phi_{3}\right)+b c_{3}$
$\frac{1}{\Delta y^{2}}$	0	0	0	$-\frac{2}{\Delta x^{2}}$??	0	0	$\frac{1}{\Delta y^{2}}$	0	0	0	0	0	0	0	ϕ_{4}		${ }^{\text {b }}$
0	$\frac{1}{\Delta y^{2}}$	0	0	$\frac{1}{\Delta x^{2}}$	$-2\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)$	$\frac{1}{\Delta x^{2}}$	0	0	$\frac{1}{\Delta y^{2}}$	0	0	0	0	0	0	ϕ_{5}		$f\left(x_{5}, y_{5}, \phi_{5}\right)+b c_{5}$
0	0	$\frac{1}{\Delta y^{2}}$	0	0	$\frac{1}{\Delta x^{2}}$	$-2\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)$	$\frac{1}{\Delta x^{2}}$	0	0	$\frac{1}{\Delta y^{2}}$	0	0	0	0	0	ϕ_{6} ϕ_{7}		$f\left(x_{6}, y_{6}, \phi_{6}\right)$ $f\left(x_{7}, y_{7}, \phi_{7}\right)$
0	0	0	$\frac{1}{\Delta y^{2}}$	0	0	? ${ }^{\left(\Delta^{2}+\right.}$	- $\frac{2}{\Delta y^{2}}$	0	0	$\triangle y^{2}$ 0	$\frac{1}{\Delta y^{2}}$	0	0	0	0	ϕ_{7} ϕ_{8}		$f\left(x_{7}, y_{7}, \phi_{7}\right)$ $f\left(x_{8}, y_{8}, \phi_{8}\right)+b c_{8}$
0	0	0	0	$\frac{1}{\Delta y^{2}}$	0	0	0	$-\frac{2}{\Delta y^{2}}$??	0	0	$\frac{1}{\Delta y^{2}}$	0	0	0	ϕ_{9}		$f\left(x_{9}, y_{9}, \phi_{9}\right)+b c_{9}$
0	0	0	0	U^{2} 0	$\frac{1}{\Delta y^{2}}$	0	0	$\frac{1}{\Delta x^{2}}$	$-2\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)$	$\frac{1}{\Delta x^{2}}$	0	¢ 0	$\frac{1}{\Delta y^{2}}$	0	0	ϕ_{10} ϕ_{11}		$f\left(x_{10}, y_{10}, \phi_{10}\right)$ $f\left(x_{11}, y_{11}, \phi_{11}\right)$
0	0	0	0	0	0	$\frac{1}{\Delta y^{2}}$	0	0	$\frac{1}{\Delta x^{2}}$	$-2\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)$	$\frac{1}{\Delta x^{2}}$	0	0	$\frac{1}{\Delta y^{2}}$	0	ϕ_{11} ϕ_{12}		$f\left(x_{11}, y_{11}, \phi_{11}\right.$ $f\left(x_{12}, y_{12}, \phi_{12}\right)+b c_{12}$
0	0	0	0	0	0	0	$\frac{1}{\Delta y^{2}}$	0	0	? ${ }^{\text {a }}$	$-\frac{2}{\Delta y^{2}}$	0	0	1 0	$\frac{1}{\Delta y^{2}}$	ϕ_{13}		$f\left(x_{7}, y_{7}, \phi_{7}\right)+b c_{13}$
0	0	0	0	0	0	0	0	??	0	0	0	$B C$??	0	¢ 0	ϕ_{14}		$f\left(x_{14}, y_{14}, \phi_{14}\right)+b c_{14}$
0	0	0	0	0	0	0	0	0	??	0	0	$\frac{1}{\Delta x^{2}}$	$\frac{-2}{\Delta x^{2}}$	$\frac{1}{\Delta x^{2}}$	0	ϕ_{15}		$f\left(x_{15}, y_{15}, \phi_{15}\right)+b c_{15}$
0	0	0	0	0	0	0	0	0	0	??	0	$\stackrel{1}{4}$	$\frac{1}{\Delta x^{2}}$	$\frac{\Delta x}{\Delta x^{2}}$	$\frac{1}{\Delta x^{2}}$	$\left(\phi_{16}\right)$		$\left.b c_{16}\right)$
0	0	0	0	0	0	0	0	0	0	0	??	0	0	??	$B C$			

Parabolic PDEs

$$
\rho c_{p} \frac{\partial T}{\partial t}=\lambda \frac{\partial^{2} T}{\partial x^{2}}+s_{T}
$$

Ordinary Differential Equations (ODEs)

$\underset{\text { of ODEs: }}{\text { A coupled system }} \quad \frac{\mathrm{d} \phi_{i}}{\mathrm{~d} t}=F_{i}\left(\phi_{j}\right)$
Explicit:
$\frac{\phi_{i}^{n+1}-\phi_{i}^{n}}{\Delta t}=F_{i}\left(\phi_{j}^{n}\right)+\mathcal{O}(\Delta t)$

Use for:

- "Non-stiff" equations
- Unsteady solutions

$$
\begin{aligned}
& \text { Implicit: } \\
& \frac{\phi_{i}^{n+1}-\phi_{i}^{n}}{\Delta t}=F_{i}\left(\phi_{j}^{n+1}\right)+\mathcal{O}(\Delta t) \\
& \forall \\
& r_{i}=F_{i}\left(\phi_{j}^{n+1}\right)-\frac{\phi^{n+1}-\phi^{n}}{\Delta t} \begin{array}{c}
\text { System of } \\
\text { nonlinear } \\
\text { equations. } \\
\text { Solve for } r_{i}=0
\end{array}
\end{aligned}
$$

Use for:

- "Stiff" equations
- Time-marching to steady solutions

Higher-order methods can be constructed. (Runge Kutta, etc.)
MATLAB: ode45 (nonstiff), ode23s (stiff)
You provide evaluation of $F_{i}\left(\phi_{j}\right)$

Example: Kinetics

$$
\begin{aligned}
A+B & \xrightarrow{k_{1}} C \\
A+C & \xrightarrow{k_{2}} D
\end{aligned} r \begin{aligned}
\frac{\mathrm{d} C_{A}}{\mathrm{~d} t} & =-r_{1}-r_{2} \\
\frac{\mathrm{~d} C_{B}}{\mathrm{~d} t} & =-r_{1} \\
\text { Initial conditions: } C_{A}=1, C_{B}=0.6 . & \frac{\mathrm{d} C_{C}}{\mathrm{~d} t}
\end{aligned}=r_{1}-r_{2},
$$

Plot concentrations as functions of time.

- requires solution of system of ODEs

Determine the equilibrium composition.

- Use stoichiometry \& mole balance

How long to achieve 99% of equilibrium?

- find this entry in the ODE solution history.

"Parabolic" PDEs

Parabolic PDEs are characterized primarily by transient diffusion.

Transient diffusion equation (constant diffusivity, Γ)

$$
\frac{\partial \phi}{\partial t}=\Gamma \nabla^{2} \phi+s_{\phi}
$$

Transient temperature diffusion equation (constant pressure, diffusivity)

$$
\rho c_{p} \frac{\partial T}{\partial t}=\lambda \nabla^{2} T+s_{T}
$$

Transient temperature diffusion equation (two-dimensional version of the above equation)

$$
\rho c_{p} \frac{\partial T}{\partial t}=\lambda\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)+s_{T}
$$

Solving Time-Dependent PDEs

The "Method of Lines"

$$
\frac{\partial \phi}{\partial t}=\Gamma \frac{\partial^{2} \phi}{\partial x^{2}}+s
$$

Spatial discretization:

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial x^{2}} & \approx \frac{\phi_{i-1}-2 \phi_{i}+\phi_{i+1}}{\Delta x^{2}} \\
\frac{\partial \phi_{i}}{\partial t} & =\Gamma_{i} \frac{\phi_{i-1}-2 \phi_{i}+\phi_{i+1}}{\Delta x^{2}}+s_{i}
\end{aligned}
$$

This is a system of coupled ODEs.

$$
\begin{aligned}
\frac{\partial \phi_{1}}{\partial t} & =\text { ? Need to use BC information... } \\
\frac{\partial \phi_{2}}{\partial t} & =\Gamma \frac{\phi_{1}-2 \phi_{2}+\phi_{3}}{\Delta x^{2}}+s_{2}, \\
\vdots & =\vdots \\
\frac{\partial \phi_{n-1}}{\partial t} & =\Gamma \frac{\phi_{n-2}-2 \phi_{n-1}+\phi_{n}}{\Delta x^{2}}+s_{n-1},
\end{aligned}
$$

Example I

(Dirichlet Boundary Conditions)

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

$T(0, t)$	$=0$,		BC at $x=0$
$T(1, t)$	$=0$,		BC at $x=1$
$T(x, 0)$	$=\phi(x)$		Initial condition

Analytical $\quad T(x, t)=\sum_{k=1}^{\infty} A_{k} e^{-k^{2} \pi^{2} \alpha t} \sin (k \pi x) \quad A_{k}=2 \int_{0}^{1} \phi(x) \sin (k \pi x) \mathrm{d} x$
solution:
$\begin{gathered}\text { Numerical } \\ \text { solution: }\end{gathered} \quad \frac{\partial T_{i}}{\partial t}=\alpha \frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}} \quad \begin{gathered}\text { Applies at all } \\ \text { "interior" points } \\ (i=2, \ldots, n-1)\end{gathered}$
What do we do at the boundaries $(i=1, i=n)$?

$T=T_{L}$	$\partial T_{1}=T_{0}-2 T_{1}+T_{2}$
λ	$\frac{\partial t}{\partial t}=\alpha \frac{\Delta x^{2}}{}$
$\underset{T_{1}}{\dot{1}}$	
${\underset{x}{x=0}}_{\lambda}^{\lambda}$	

$$
T_{x_{0}}=\frac{T_{1}+T_{0}}{2} \Rightarrow T_{0}=2 T_{x_{0}}-T_{1} \quad \frac{\partial T_{1}}{\partial t}=\alpha \frac{2 T_{x_{0}}-3 T_{1}+T_{2}}{\Delta x^{2}}
$$

A similar procedure $\quad \frac{\partial T_{n}}{\partial t}=\alpha \frac{2 T_{x_{L}}-3 T_{n}+T_{n-1}}{\Delta x^{2}}$ at $x=L$ leads to:

Solve this problem for $t=[0,240]$ seconds given: $\phi(x)=\exp \left(-100(x-0.3)^{2}\right)$

$$
\alpha=\frac{\lambda}{\rho c_{p}}=10^{-} 4 \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

Example 2

(Neumann Boundary Conditions)

$$
\begin{aligned}
\left.\frac{\partial T}{\partial x}\right|_{0, t} & =\beta_{0}, \quad \mathrm{BC} \text { at } x=0 \\
\left.\frac{\partial T}{\partial x}\right|_{1, t} & =\beta_{L}, \quad \mathrm{BC} \text { at } x=1 \\
T(x, 0) & =\phi(x) \quad \text { Initial condition }
\end{aligned}
$$

$\begin{gathered}\text { Numerical } \\ \text { solution: }\end{gathered} \quad \frac{\partial T_{i}}{\partial t}=\alpha \frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}} \quad \begin{gathered}\text { Applies at all } \\ \text { "interior" points } \\ (i=2 \ldots n-1)\end{gathered}$
What do we do at the boundaries $(i=1, i=n)$?
$=\left.\frac{\mathrm{d} T}{\mathrm{~d} x}\right|_{x=L}=\beta_{L}$

$\frac{\partial T_{1}}{\partial t}=\left.\alpha \frac{T_{0}-2 T_{1}+T_{2}}{\Delta x^{2}} \quad$| Need to |
| :---: |
| eliminate T_{0}. |$\quad \frac{\mathrm{d} T}{\mathrm{~d} x}\right|_{x=0}$

$$
\frac{\partial T_{1}}{\partial t}=\alpha\left(\frac{T_{2}-T_{1}}{\Delta x^{2}}-\frac{\beta_{0}}{\Delta x}\right) \quad \text { at } i=1 .
$$

Using the same analysis
at $x=1(i=n) \ldots$

Solve this problem given $\beta_{0}=\beta_{L}=0$ and the same conditions as on the previous slide.

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

$\begin{aligned} & \begin{array}{l}\text { Using the same analysis } \\ \text { at } x=1(i=n) \ldots\end{array}\end{aligned} \frac{\partial T_{n}}{\partial t}=\alpha \frac{T_{n-1}-T_{n}}{\Delta x^{2}}+\frac{\alpha}{\Delta x} \beta_{L} \quad$ at $i=n$.

General Fluxes

$$
\begin{aligned}
& \frac{\partial(x)}{\partial t}=-\frac{1}{c_{t}} \frac{\partial(\mathbf{J})}{\partial z} \quad(\mathbf{J})=-c_{t}[D]\left(\frac{\partial x}{\partial z}\right) \\
& \text { What have we assumed here? } \\
& \frac{\partial(x)_{i}}{\partial t}=-\frac{1}{c_{t}} \frac{(\mathbf{J})_{i+\frac{1}{2}}-(\mathbf{J})_{i-\frac{1}{2}}}{\Delta z} \quad \begin{array}{c}
\text { Applies at } \\
i=1 \ldots n
\end{array}
\end{aligned}
$$

NOTE: " i " denotes a spatial index, not a species index.

$n_{\text {species }}-1$ Dimensional:

$$
\begin{array}{lc}
(\mathbf{J})_{i-\frac{1}{2}}=-c_{t}[D]_{i-\frac{1}{2}} \frac{(x)_{i}-(x)_{i-1}}{\Delta z} & \text { At } i=1 \text { we need } \\
\text { to apply BCs }
\end{array}
$$

Example: Variable Effective Diffusivity

This represents $n_{s}-1$

$$
\begin{aligned}
\frac{\partial x_{i}}{\partial t} & =-\frac{1}{c_{t}} \nabla \cdot \mathbf{J}_{i} \\
& =\nabla \cdot\left(D_{i, e f f} \nabla x_{i}\right)
\end{aligned}
$$

Assume Neumann BCs: $\frac{\partial x_{i}}{\partial z}=0 \quad @ z=0$ and $z=L$

Given $\bigoplus_{i j}, x_{i}(t=0)$, how would you solve this?

