Mass Transfer in Turbulent Flow

ChEn 6603

References:

- S. B. Pope.Turbulent Flows. Cambridge University Press, New York, 2000.
- D. C.Wilcox.Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.
- H. Tennekes and J. L. Lumley.A First Course in Turbulence. MIT Press, Cambridge, MA, I972.
- R. O. Fox. Computational Models for Turbulent Reacting Flows. Cambridge University Press, 2003.

OF UTAH

Methane pool fire
Mixing in reacting flow (DNS)

$\sim 6 \mathrm{~cm}$

Rayleigh-Taylor instability (DNS calculation)

William H. Cabot and Andrew W. Cook
Nature Physics 2, 562-568 (2006)

Origins of Turbulence

Energy balance perspective.

- Consider steady, isothermal, fully developed turbulent flow in a horizontal pipe
- Increasing pressure drop does not increase flow rate proportionally. Why? Where is the energy going? How?
- Work done by pressure forces balanced by work done by viscous forces
- Energy provided at "large" scales, dissipated at "small" scales.
- Length scales reduce to meet demand of energy balance.
- Smaller length scales \Rightarrow steeper gradients \Rightarrow more dissipation.

Kinetic energy equation:

$$
\frac{\partial \rho k}{\partial t}+\nabla \cdot(\rho k \mathbf{v})=-\mathbf{v} \cdot \nabla \cdot \tau-\mathbf{v} \cdot \nabla p+\rho \sum_{i=1}^{n} \omega_{i} \mathbf{v} \cdot \mathbf{f}_{i}
$$

What assumptions?

$$
0=\underbrace{\mathbf{v} \cdot \nabla p}_{\text {pressure work }}+\underbrace{\mathbf{v} \cdot \nabla \cdot \tau}_{\text {viscous dissipation }}
$$

Velocity Length Scales

L - largest length scale (m)
η - smallest length scale (m)
U - velocity at L-scale (m / s)
v - kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$) $=\mu / \rho$
ε - kinetic energy dissipation rate $\left(\mathrm{m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~s}^{-1}\right)$

Most kinetic energy is contained in "large" length scales (L). It is dissipated primarily at "smallest" (Kolmogorov) length scales (η) by molecular viscosity (v).

Can we form a length scale from ε and v ?

$$
\eta \propto\left(\frac{\nu^{3}}{\epsilon}\right)^{1 / 4} \quad \epsilon \propto \frac{U U}{L / U} \quad \begin{aligned}
& \text { kinetic energy } \\
& \text { "integral" or "large" time scale }
\end{aligned}
$$

Note: ϵ doesn't depend on v. v just determines the smallest length scale in the flow.

Key result! Tells us how length-scales separate!

Scalar Length Scales

ℓ_{B} - smallest scalar length scale (Batchelor scale)

Sc >1

"mixing paint" - $\ell_{B}<\eta$ - scalar only feels straining from smallest velocity scales.
(mass diffuses slower than momentum)
$\ell_{B}^{2} \propto D t$
$\ell_{B} \propto D^{1 / 2}\left(\frac{\nu}{\epsilon}\right)^{1 / 4}$
Form a time scale from the
"Kolmogorov" time scale (ie. from v and ε).
$\frac{\ell_{B}}{\eta} \propto D^{1 / 2}\left(\frac{\nu}{\epsilon}\right)^{1 / 4}\left(\frac{\nu^{3}}{\epsilon}\right)^{-1 / 4}$
$\propto\left(\frac{D}{\nu}\right)^{1 / 2}=\mathrm{Sc}^{-1 / 2}$

$\mathrm{Sc}<1$

$\ell_{B}>\eta-$ at ℓ_{B}, there are still velocity fluctuations,
but the scalar field is uniform
(mass diffuses faster than momentum)

$$
\begin{aligned}
\ell_{B} & \propto\left(\frac{D^{3}}{\epsilon}\right)^{1 / 4} \quad \begin{array}{c}
\text { Relevant parameters are } D, \varepsilon . \\
(v \text { only dominant near } \eta)
\end{array} \\
\frac{\ell_{B}}{\eta} & \propto\left(\frac{D}{\epsilon}\right)^{1 / 4}\left(\frac{\nu^{3}}{\epsilon}\right)^{-1 / 4} \\
& \propto\left(\frac{D}{\nu}\right)^{3 / 4}=\mathrm{Sc}^{-3 / 4} \\
\frac{L}{\ell_{B}} & =\frac{L}{\eta} \frac{\eta}{\ell_{B}} \propto \mathrm{Re}^{3 / 4} \mathrm{Sc}^{3 / 4}
\end{aligned}
$$

Solution Options

\notin Direct Numerical Simulation (DNS)

- Resolve all time/length scales by solving the governing equations directly.
- Restricted to small problems.
- Cost scales as Re^{3} for turbulence alone! (Species with $\mathrm{Sc}>1$, and/or complex chemistry could further increase cost)
$\rightarrow\left(L / \eta \sim \mathrm{Re}^{3 / 4}, 3 \mathrm{D}\right.$, time $)$
Large Eddy Simulation (LES)
- Resolve "large" spatial \& temporal scales
- Model "small" (unresolved) time/space scales
\& Reynolds-Averaged Navier Stokes (RANS)
- Time-averaged.
- Describes only mean features of the flow.

Model all effects of the flow field

- Useful only for some classes of problems (usually interfaces like walls)
- Commonly done in heat transfer \& mass transfer (also for some problems involving aerodynamics)

Time/Ensemble Averaging (RANS)

Constant density, viscosity: $\nabla \cdot \mathbf{v}=0$

$$
\frac{\partial \mathbf{v}}{\partial t}=-\nabla \cdot(\mathbf{v} \otimes \mathbf{v})-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \mathbf{v}
$$

$\langle\phi\rangle$ - ensemble average of ϕ.

$$
\langle\nabla \phi\rangle=\nabla\langle\phi\rangle
$$

$$
\bar{\phi}=\langle\phi\rangle
$$

Continuity: $\langle\nabla \cdot \mathbf{v}\rangle=\langle 0\rangle$,

$$
\nabla \cdot\langle\mathbf{v}\rangle=0
$$

$$
\nabla \overline{\mathbf{v}}=0
$$

Momentum:

$$
\begin{aligned}
& \left\langle\frac{\partial \mathbf{v}}{\partial t}\right\rangle=\left\langle-\nabla \cdot \mathbf{v v}-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \mathbf{v}\right\rangle, \\
& \frac{\partial\langle\mathbf{v}\rangle}{\partial t}=-\nabla \cdot\langle\mathbf{v} \mathbf{v}\rangle-\frac{1}{\rho} \nabla\langle p\rangle+\nu \nabla^{2}\langle\mathbf{v}\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& \text { index (Einstein) notation: }
\end{aligned}
$$

The Closure Problem

$$
\begin{gathered}
\phi^{\prime} \equiv \phi-\bar{\phi} \quad \text { "Fluctuating" component } \\
\overline{v_{i} v_{j}}=\overline{\left(\bar{v}_{i}+v_{i}^{\prime}\right)\left(\bar{v}_{j}+v_{j}^{\prime}\right)} \\
=\overline{\bar{v}}_{i} \bar{v}_{j}+\overline{\bar{v}_{i} v_{j}^{\prime}}+\overline{v_{i}^{\prime} \bar{v}_{j}}+\overline{v_{i}^{\prime} v_{j}^{\prime}} \\
\bar{\phi}^{\prime}=0 \quad \overline{\bar{\phi} \varphi^{\prime}}=0 \quad \overline{\bar{\phi}}=\bar{\phi} \\
\frac{\partial}{\partial x_{j}}\left(\bar{v}_{i} \bar{v}_{j}\right)+\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}-\nu \frac{\partial}{\partial x_{j}} \frac{\partial \bar{v}_{j}}{\partial x_{i}}+\underbrace{\frac{\partial}{\partial x_{j}}\left(\overline{v_{i}^{\prime} v_{j}^{\prime}}\right)}=0 \\
\frac{\partial}{\frac{\partial}{\partial x_{j}}\left(\bar{v}_{i} \bar{v}_{j}\right)+\overline{v_{i}^{\prime} v_{j}^{\prime}}}
\end{gathered}
$$

For large $\mathrm{Re}, \mu_{\mathrm{t}} \gg \mu$ (molecular viscosity is negligible).

Time-Averaged Species Equations

$$
\begin{aligned}
\text { ty... } \nabla \cdot \overline{\omega_{i} \mathbf{v}}+\frac{1}{\rho} \nabla \cdot \overline{\mathbf{j}}_{i} & =\bar{s}_{i} / \rho \quad \text { A very difficult problem... } \\
\nabla \cdot\left(\bar{\omega}_{i} \overline{\mathbf{v}}\right)+\frac{1}{\rho} \nabla \cdot \overline{\mathbf{j}}_{i}+\nabla \cdot\left(\overline{\omega_{i}^{\prime} \mathbf{v}^{\prime}}\right) & =\bar{s}_{i} / \rho \\
\nabla \cdot\left(\bar{\omega}_{i} \overline{\mathbf{v}}\right)+\frac{1}{\rho} \nabla \cdot\left(\overline{\mathbf{j}}_{i}+\mathbf{j}_{i, \text { turb }}\right) & =\bar{s}_{i} / \rho
\end{aligned}
$$

MODEL for turbulent species diffusive flux:

$$
\begin{array}{cl}
\mathbf{j}_{i, \text { turb }}=-\rho D_{\text {turb }}^{\circ} \nabla \bar{\omega}_{i} & \begin{array}{l}
D_{\text {turb }}^{\circ} \text { turbulent diffusivity (for mass } \\
\text { flux relative to mass avg. velocity) }
\end{array} \\
\mathrm{Sc}_{\text {turb }}=\frac{\nu_{\text {turb }}}{D_{\text {turb }}^{\circ}}=\frac{\mu_{\text {turb }}}{\rho D_{\text {turb }}^{\circ}} \quad \begin{array}{l}
\text { - } \mu_{\text {turb }} \text { - eddy viscosity }
\end{array} \\
\text { - Typically, Scturb is specified. }
\end{array}
$$

@ Large Re, $\mathbf{j}_{\text {iturb }} \gg \mathbf{j}_{i}$ (molecular diffusion is negligible)

$$
\nabla \cdot\left(\bar{\omega}_{i} \overline{\mathbf{v}}\right)+\frac{1}{\rho} \nabla \cdot \mathbf{j}_{i, \text { turb }}=\bar{s}_{i} / \rho
$$

Multicomponent effects are irrelevant at sufficiently high Re.

Spatial Averaging (LES)

$$
\bar{\phi} \equiv \int_{-\infty}^{\infty} \phi(\mathbf{x}) G(\mathbf{X}) \mathrm{d} \mathbf{X}
$$

$G(\mathbf{x})$ - filter kernel function

 removes "high wavenumber" components of ϕ.

[^0]Monday, April 23, 12

Variable Density

$$
\frac{\partial \rho \omega_{i}}{\partial t}=-\nabla \cdot \rho \omega_{i} \mathbf{v}-\nabla \cdot \mathbf{j}_{i}+s_{i}
$$

Favre-averaging (RANS) Favre-filtering (LES)

$$
\tilde{\phi} \equiv \frac{\overline{\rho \phi}}{\bar{\rho}} \longrightarrow \bar{\rho} \tilde{\phi}=\overline{\rho \phi}
$$

$$
\begin{aligned}
\frac{\partial \bar{\rho} \tilde{\omega}_{i}}{\partial t} & =-\nabla \cdot \bar{\rho} \widetilde{\omega_{i} \mathbf{v}}-\nabla \cdot \overline{\mathbf{j}}_{i}+\bar{s}_{i} \\
& =-\nabla \cdot \bar{\rho} \tilde{\omega}_{i} \tilde{\mathbf{v}}-\nabla \cdot\left(\overline{\mathbf{j}}_{i}+\mathbf{j}_{i, \text { turb }}\right)+\bar{s}_{i}
\end{aligned}
$$

Leads to many additional complications, most of which are typically ignored...

$$
\text { example: } \quad \begin{aligned}
\overline{\mathbf{j}}_{i} & =\sum_{k=1}^{n} \overline{\rho D_{i k}^{o} \nabla \omega_{k}} \\
& \stackrel{\sim}{\sim} \bar{\rho} \sum_{k=1}^{n} \bar{D}_{i k}^{o} \nabla \tilde{\omega}_{k}
\end{aligned}
$$

$$
\Delta=\text { "filter width" }
$$

LES: if $\Delta \gg \ell_{B}, \Delta \gg \eta$ then $\mathbf{j}_{i, \text { turb }} \gg \overline{\mathbf{j}}_{i}$

[^0]: Courtesy R.J.McDermott

