"Unsteady" Mass-Transfer Models

ChEn 6603

Outline

- Context for the discussion
- $\stackrel{\text{\tiny }}{=}$ Solution for transient binary diffusion with constant c_t, N_t .
- \mathcal{P} Solution for multicomponent diffusion with c_t, N_t .
- Film theory revisited (surface renewal models)
- Fransient diffusion in droplets, bubbles

Context

- Film theory so far we assumed steady state, no reaction in bulk (only potentially at interface)
 - Mass Transfer Coefficients used to simplify problem don't fully resolve diffusive fluxes.
 - Bootstrap problem solved (via definition of $[\beta]$) to obtain total species fluxes.
- Unsteady cases?
 - What if we want to know the transient concentration profiles?
 - What if we want to consider the effects of transient (perhaps turbulent) mixing near the interface?

Here we consider unsteady film-theory approaches...

Hung Le and Parviz Moin. http://www.stanford.edu/group/ctr/gallery/003_2.html

Solution Options

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot \mathbf{N}_i + r_i$$

 $\frac{\partial c_i}{\partial t} = -\nabla \cdot \mathbf{N}_i + r_i$ Describes evolution of c_i at all points in space/time, but requires \mathbf{N}_i , which may involve solution of the momentum equations...

- Solve the problem numerically
 - Allows us to incorporate "full" description of the physics
 - ▶ may be quite complex (particularly if we must solve for a non-trivial velocity profile...)
 - Could also simplify portions (constant [D], c_t , etc.)
 - Can solve this for a variety of BCs, ICs
- Make enough assumptions/simplifications to solve this analytically
 - Different BC/IC may require different form for analytic solution
 - We already did this for effective binary and linearized theory for a few simple problems (2-bulb problem, Loschmidt tube)
 - ▶ T&K chapters 5 & 6.
 - Here we show a few more techniques, based on unsteady film theory
 - Don't resolve mass transfer completely get a coarser description of the diffusive fluxes...

 $(J) = c_t[k^{\bullet}](\Delta x)$ Approximation for diffusive flux (total flux).

Binary Formulation (1/3)

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot \mathbf{N}_i + r_i$$

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot \mathbf{N}_i + r_i$$
 What are the assumptions?
$$c_t \frac{\partial x_i}{\partial t} = -\nabla \cdot \mathbf{N}_i$$

$$c_t \frac{\partial x_i}{\partial t} + \mathbf{N}_t \cdot \nabla x_i = -\nabla \cdot \mathbf{J}_i$$

$$c_t \frac{\partial x_i}{\partial t} + N_t \frac{\partial x_i}{\partial z} = -\frac{\partial}{\partial z} J_i$$

$$\frac{\partial x_1}{\partial t} + \frac{N_t}{c_t} \frac{\partial x_1}{\partial z} = D \frac{\partial^2 x_1}{\partial z^2}$$
 (binary)

$c_{t} \frac{\partial x_{i}}{\partial t} + \mathbf{N}_{t} \cdot \nabla x_{i} = -\nabla \cdot \mathbf{J}_{i}$ $c_{t} \frac{\partial x_{i}}{\partial t} + N_{t} \frac{\partial x_{i}}{\partial z} = -\frac{\partial}{\partial z} J_{i}$ $\mathbf{Problem statement:}$ $\mathbf{semi-infinite diffusion}$ $\mathbf{Semi-$ Problem statement:

$$x_i = x_{i\infty}$$
. (Initial condition

$$=0, \qquad t>0, \qquad x_i=x_i$$

$$x_i-x_{i0}$$
.

$$\chi_i = \chi_{i\infty}$$
.

valid for "short" contact times (more later)

Binary Formulation (2/3)

$$\frac{\partial x_1}{\partial t} + \frac{N_t}{c_t} \frac{\partial x_1}{\partial z} = D \frac{\partial^2 x_1}{\partial z^2}$$

 $\frac{\partial x_1}{\partial t} + \frac{N_t}{c_t} \frac{\partial x_1}{\partial z} = D \frac{\partial^2 x_1}{\partial z^2}$ Observation: since x is dimensionless, z, t, D must appear in a dimensionless combination in the solution.

$$\zeta = \frac{z}{\sqrt{4t}}$$

$$\zeta = \frac{z}{\sqrt{4t}} \quad \text{chosen for convenience,} \quad \frac{\partial}{\partial t} = \frac{\mathrm{d}}{\mathrm{d}\zeta} \frac{\partial \zeta}{\partial t} = -\frac{1}{2} \frac{\zeta}{t} \frac{\mathrm{d}}{\mathrm{d}\zeta}$$

$$\frac{\partial}{\partial z} = \frac{\mathrm{d}}{\mathrm{d}\zeta} \frac{\partial \zeta}{\partial z} = \frac{\zeta}{z} \frac{\mathrm{d}}{\mathrm{d}\zeta}$$

$$\frac{\partial^2}{\partial z^2} = \frac{\mathrm{d}^2}{\mathrm{d}\zeta^2} \left(\frac{\partial \zeta}{\partial z}\right)^2 = \frac{\zeta^2}{z^2} \frac{\mathrm{d}}{\mathrm{d}\zeta}$$

$$c_{t} \left(\frac{-\zeta}{2t}\right) \frac{\mathrm{d}x}{\mathrm{d}\zeta} + N_{t} \left(\frac{\zeta}{z}\right) \frac{\mathrm{d}x}{\mathrm{d}\zeta} = c_{t} D_{i} \frac{\zeta^{2}}{z^{2}} \frac{\mathrm{d}^{2}x}{\mathrm{d}\zeta^{2}}$$
$$\left(-2\zeta + \frac{N_{t}}{c_{t}} \frac{z}{\zeta}\right) \frac{\mathrm{d}x}{\mathrm{d}\zeta} = D \frac{\mathrm{d}^{2}x}{\mathrm{d}\zeta^{2}}$$

$$D\frac{\mathrm{d}^2 x}{\mathrm{d}\zeta^2} + 2(\zeta - \phi)\frac{\mathrm{d}x}{\mathrm{d}\zeta} = 0$$

$$\phi \equiv \frac{N_t}{c_t}\sqrt{t}$$

$$x_1 = x_{1,0} \quad \zeta = 0$$

$$x_1 = x_{1,\infty} \quad \zeta = \infty$$

Solve using order reduction

$$\frac{x_1 - x_{1,0}}{x_{1,\infty} - x_{1,0}} = \frac{1 - \operatorname{erf}\left(\frac{\zeta - \phi}{\sqrt{D}}\right)}{1 + \operatorname{erf}\left(\frac{\phi}{\sqrt{D}}\right)}$$

Note that this is a function of both z and t.

Binary Formulation (3/3)

$$\frac{x_1 - x_{1,0}}{x_{1,\infty} - x_{1,0}} = \frac{1 - \operatorname{erf}\left(\frac{\zeta - \phi}{\sqrt{D}}\right)}{1 + \operatorname{erf}\left(\frac{\phi}{\sqrt{D}}\right)}$$

Calculate
$$J_1$$
 at $z=0$,

$$\frac{x_1 - x_{1,0}}{x_{1,\infty} - x_{1,0}} = \frac{1 - \operatorname{erf}\left(\frac{\zeta - \phi}{\sqrt{D}}\right)}{1 + \operatorname{erf}\left(\frac{\phi}{\sqrt{D}}\right)} \qquad \text{Calculate } J_1$$

$$1 + \operatorname{erf}\left(\frac{\phi}{\sqrt{D}}\right) \qquad J_{1,0} = c_t \sqrt{\frac{D}{\pi t}} \frac{\exp\left(\frac{-\phi^2}{D}\right)}{1 + \operatorname{erf}\left(\frac{\phi}{\sqrt{D}}\right)} (x_{1,0} - x_{1,\infty})$$

What happens to J_1 as $z \rightarrow \infty$?

Mass Transfer Coefficients (binary system):

Low-flux limit (as $N_t \rightarrow 0$)

$$J_{1,0} = c_t \sqrt{\frac{D}{\pi t}} \left(x_{1,0} - x_{1,\infty} \right) \qquad \qquad k = \sqrt{\frac{D}{\pi t}} \qquad \Xi = \frac{\exp\left(\frac{-\phi^2}{D}\right)}{1 + \operatorname{erf}\left(\frac{\phi}{\sqrt{D}}\right)}$$

$$J_{1,0} = c_t k \Xi(x_{1,0} - x_{1,\infty}) = c_t k^{\bullet}(x_{1,0} - x_{1,\infty})$$

$$N_{1,0} = c_t \beta_0 k^{\bullet}(x_{1,0} - x_{1,\infty})$$

Multicomponent System

$$\frac{\partial(x)}{\partial t} + \frac{N_t}{c_t} \frac{\partial(x)}{\partial z} = [D] \frac{\partial^2(x)}{\partial z^2} \quad \zeta = \frac{z}{\sqrt{4t}} \quad \phi \equiv \frac{N_t}{c_t} \sqrt{t}$$

This has the analytic solution (see T&K 9.3.1-9.3.2):

$$\begin{pmatrix} (x-x_{\infty}) = \left[[I] - \operatorname{erf} \left[(\zeta - \phi) [D]^{-\frac{1}{2}} \right] \right] \left[[I] + \operatorname{erf} \left[\phi [D]^{-\frac{1}{2}} \right] \right]^{-1} (x_0 - x_{\infty}) \\ (J_0) = \frac{c_t}{\sqrt{\pi t}} \left[D \right]^{\frac{1}{2}} \exp \left[\phi [D]^{-\frac{1}{2}} \right] \left[[I] + \operatorname{erf} \left[\phi [D]^{-\frac{1}{2}} \right] \right]^{-1} (x_0 - x_{\infty})$$
 remember that these are matrix functions!

Low-flux limit (as
$$N_t \rightarrow 0$$
) $J_0 = \frac{c_t}{\sqrt{\pi t}} [D]^{\frac{1}{2}} (x_0 - x_\infty)$

$$[k] = (\pi t)^{-\frac{1}{2}} [D]^{\frac{1}{2}}$$
 $[\Xi] = \exp\left[\phi [D]^{-\frac{1}{2}}\right] [[I] + \operatorname{erf}[\phi [D]^{-\frac{1}{2}}]^{-1}$

$$(J_0) = c_t[k][\Xi](x_0 - x_\infty) = c_t[k^{\bullet}](x_0 - x_\infty)$$

$$(N_0) = c_t[\beta_0][k^{\bullet}](x_0 - x_{\infty})$$

Possible approaches:

- Solve the transient problem (beware of the "short" time assumption)
- Use this information to formulate other steady-state models (e.g. turbulent mixing from bulk to surface)

Surface Renewal Models

$$(J_0) = c_t[k][\Xi](x_0 - x_\infty) = c_t[k^{\bullet}](x_0 - x_\infty)$$

$$(N_0) = c_t[\beta_0][k^{\bullet}](x_0 - x_{\infty})$$

$$[k] = (\pi t)^{-\frac{1}{2}} [D]^{\frac{1}{2}}$$

(J), (N) are functions of time since [k] is a function of time.

How would we handle this problem?

<u>Idea</u>: develop a model for k that approximates the effects of transients near the surface.

Concept:

"Fresh" fluid from bulk is transported to the interface, where diffusion occurs for some time, t. Then this is transported back to the bulk and replaced by more "fresh" fluid.

Initial &
$$z=0, \quad x_i=x_{i0} \quad t>0$$

Boundary $z\geq 0, \quad x_i=x_{i\infty} \quad t=0$

$$z \ge 0, \quad x$$

$$t = 0$$

$$z \to \infty, \quad x_i = x_{i\infty} \quad t > 0$$

Assumes that the "bulk" is unaffected by mass transfer ("short" contact times)

Age distribution function, $\psi(t)$, determines how long a fluid parcel is at the interface. (will affect expression for [k])

Surface-Renewal Models

Age distribution function, $\psi(t)$, determines how long a fluid parcel is at the interface. (will affect expression for [k])

$$k_{ij}(t) = \sqrt{\frac{D_{ij}}{\pi t}}$$

$$k_{ij}(t) = \sqrt{\frac{D_{ij}}{\pi t}}$$
 $k_{ij} = \int_0^\infty k_{ij}(t)\psi(t)dt$

Attempts to model a statistically stationary process (fast mixing, no saturation to bulk) by a steady state [k].

Higbie model (1935)

Assumes that all fluid parcels stay at the interface for a fixed amount of time, t_e .

$$\psi(t) = \begin{cases} 1/t_e & t \le t_e \\ 0 & t > t_e \end{cases} \longrightarrow [k] = \frac{2}{\sqrt{\pi t_e}} [D]^{1/2}$$

Note typo in T&K 9.3.33 (t vs. t_e)

Danckwerts model (1951)

Fluid parcels have a greater chance of being replaced the longer they are at the interface.

$$\psi(t) = s \exp(-st)$$
 \longrightarrow $[k] = \sqrt{s}[D]^{1/2}$

s - rate of surface renewal (1/sec) (fraction of surface area replaced by fresh fluid in unit time)

See T&K §9.4

Bubbles, Drops, Jets

Spheres

$$[Fo] = \frac{[D]t}{\delta^2}$$

Cylinders

For "small" Fo (Fo«1), we are safe to use surface renewal concepts. What happens at "large" Fo (Fo \rightarrow 1)?

$$\Delta x_i = x_{iI} - \langle x_i \rangle$$
 $\langle x_i \rangle$ - "mixing cup" average

Fractional Approach to EQ

$$(J_0) = c_t[k][\Xi](x_0 - x_\infty) = c_t[k^{\bullet}](x_0 - x_\infty)$$

 $(N_0) = c_t[\beta_0][k^{\bullet}](x_0 - x_\infty)$

x_{∞} is changing!

(this solution is not valid)

$$F \equiv rac{(x_{10}-\langle x_1
angle)}{(x_{10}-x_{1I})}$$
 Binary \downarrow $(x_0-\langle x
angle) = [F](x_0-x_I)$ Multicomponent

For a spherical droplet/particle:

$$[F] = \left[[I] - \frac{6}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} \exp\left[-m^2 \pi^2 \operatorname{Fo}_{\text{ref}} [D']\right] \right]$$
$$[D'] = \frac{1}{D_{\text{ref}}} [D] \qquad \operatorname{Fo}_{\text{ref}} \equiv D_{\text{ref}} \frac{t}{r_0^2}$$

 x_0 - initial/boundary composition (t=0)

 x_I - interface composition (constant in time)

 $\langle x \rangle$ - average composition (changing in time), use in place of x_{∞} .

note: $\frac{6}{\pi^2} \sum_{m=0}^{\infty} m^{-2} = 1$

$$Sh \equiv [k] \cdot 2r_0[D]^{-1}$$

Sherwood number related to $\partial F/\partial Fo$.

$$[\mathrm{Sh}] = \frac{2}{3}\pi^2 \left[\sum_{m=1}^{\infty} \exp\left[-m^2\pi^2 \operatorname{Fo}_{\mathrm{ref}}\left[D'\right]\right] \right] \left[\sum_{m=1}^{\infty} \frac{1}{m^2} \exp\left[-m^2\pi^2 \operatorname{Fo}_{\mathrm{ref}}\left[D'\right]\right] \right]^{-1} \text{ remember that these are matrix functions!}$$

See fig. 9.7 (L'Hopital's rule)

Foref
$$\to \infty \implies \text{Sh} = \frac{2}{3}\pi^2[I] \Rightarrow [k] = \frac{\pi^2}{3r_0}[D]$$

Limiting cases:

Foref
$$\ll 1 \implies [k] = \frac{2}{\sqrt{\pi t}} [D]^{1/2}$$