See T&K Chapter 9

“Unsteady” Mass-
Transfer Models
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Qutline

¢ Context for the discussion

¢ Solution for transient binary diffusion with constant c;, V..

¢ Solution for multicomponent diffusion with ¢, V..

€ Film theory revisited (surface renewal models)

¢ Transient diffusion in droplets, bubbles
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Context

¢ Film theory - so far we assumed steady state, no
reaction in bulk (only potentially at interface)

* Mass Transfer Coefficients used to simplify problem - don’t fully
resolve diffusive fluxes.

* Bootstrap problem solved (via definition of [f]) to obtain total
species fluxes.

¢ Unsteady cases?
* What if we want to know the transient concentration profiles?

* What if we want to consider the effects of transient (perhaps
turbulent) mixing near the interface?

Here we consider unsteady film-theory approaches...

Hung Le and Parviz Moin.
' | http://www.stanford.edu/group/ctr/gallery/003_2.html

U

THE 4
UNIVERSITY
OF UTAH

Wednesday, April 4, 12


http://www.stanford.edu/group/ctr/gallery/003_2.html
http://www.stanford.edu/group/ctr/gallery/003_2.html

Solution Options

dc; Describes evolution of ¢; at all points in
= —V N, +1r; spaceltime, but requires N;, which may involve
ot solution of the momentum equations...

¢ Solve the problem numerically
* Allows us to incorporate “full” description of the physics

» may be quite complex (particularly if we must solve for a non-trivial velocity profile...)
* Could also simplify portions (constant [D], ¢, etc.)
* Can solve this for a variety of BCs, ICs

¢ Make enough assumptions/simplifications to solve this analytically
* Different BC/IC may require different form for analytic solution

* We already did this for effective binary and linearized theory for a few simple
problems (2-bulb problem, Loschmidt tube)

» T&K chapters 5 & 6.
* Here we show a few more techniques, based on unsteady film theory

» Don’t resolve mass transfer completely - get a coarser description of the diffusive fluxes...

() = k(M)
u (N) (
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See T&K 9.2

Binary Formulation (1/3)

(‘9(:7;
— —V . Nz T;
ot "
‘ What are the assumptions!?
0x;
Ct g —V . Nz
ot Problem statement:
5 ‘ What happened here! semi-infinite diffusion
Ly
Ct —|—NtVCUZ:—VJZ - ~
0t BCs & ICs
‘ One-dimensional... z>0, =0, Xi=Xio. (Initial condition)

z=0, t>0, x;=xi. (Boundary condition)

= ——J z—0, t>0, xi=xXio. (Boundary condition)j

ot + 0z 0z - \

valid for “short”
contact times
(more later)

011 N N, Oxq 0?11

Ot | ¢ 0z O 022
..... U
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Binary Formulation (2/3)

8331

Nt 8331
ot

Ct 0z

—(\ dx (\ dx
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N; z\ dx
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Note that this
is a function of
both z and +.

Observation: since x is dimensionless, z, f, D must appear
in 2 dimensionless combination in the solution.
C _ < chosen for convenience, 0
At /D is dimensionless ot
a JR—
0z
82
CQ 42z 922
ceD; > ——
t (] Z2 dCQ
d?x
D—~
d¢?
0 Solve using
order 1 (C—¢)
—erf ( 222
reduction L1 — L1,0 _ VD
D> Tic —Tip0 ¢
o0 1+ erf (\/5>
Y
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Binary Formulation (3/3)

_ C—¢ Calculate J; —$?
X1 —x1,0 1 —ert ( \/5) at z=0, I D eXp( D ) B
= ' 1,0 — C¢ p p (513‘1,0 $1,oo)
xl,OO _Qj]_,() 1 —|—el"f (%) T 1_|_erf (\/_5)

What happens to J; as z—!?

Mass Transfer Coefficients (binary system):

Low-flux limit (as N;—0)

_Qg?
exp
D D — ( D )
Ji,0 = ¢\ — (1.0 — %1,00) > =4/ == 5
7t t 1+ erf (—h)

=
-

Jio = ckE(x10— T1.00) = ctk®* (21,0 — T1.00)

Nio = cfok® (1,0 — T1,00)
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See T&K 9.3.1-9.3.2

Multicomponent System

Ox) Nyo(x)
ot * ¢, 0z D]

) _ 2 N
022 ‘ V4t ¢_ct\/£

This has the analytic solution (see T&K 9.3.1-9.3.2):

<<x o) = 1)~ ert [~ ) (DIH]] 111 4 ext [0 1D]7]] 7 (a0 — )

Ct

(JO) — \/ﬁ [D]% eXp {¢ [D]_%} {[I] T erf ¢ [D]_%H h (ZE() B xOO) A | remember that these
:\[ are matrix functions!

C 1
Low-flux limit (as N,—0) Jo = \/% D2 (zg — Too)
_1 _11-1
K] = (nt) #[D]F  [E] =exp |¢[D] 2| |[1] + exts [D] 2
(Jo) = clk][El(T0 — 7o) = cr[k®](z0 — Too) .
N o o Possible approaches:
( O) - G [BOH ](:130 - .CI’JOO) * Solve the transient problem (beware of
the “short” time assumption)
* Use this infformation to formulate other
steady-state models (e.g. turbulent
,,,,, U mixing from bulk to surface)
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See T&K §9.1

Surface Renewal Models

(No) = culfol (k) (o - 7o) K] = (nt)~#[D]?

Idea: develop a model for k that
approximates the effects of
transients near the surface.

(J), (N) are functions of time
since [k] is a function of time.

How would we handle this problem?

Concept:

“Fresh” fluid from bulk is transported to the interface, where diffusion occurs for some
time, #. Then this is transported back to the bulk and replaced by more “fresh” fluid.

\_

Initial & 2=0, wi=zp t>0

Boundary 220, x,=Tijno =0

conditions: zZ— 00, X = Tijco t >0

Assumes that the “bulk’ is unaffected by mass

transfer (“short” contact times)
Age distribution function, y(7), determines how long a fluid
U parcel is at the interface. (will affect expression for [k])
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See T&K §9.1

Surface-Renewal Models

Age distribution function, y(7), determines how long a fluid
parcel is at the interface. (will affect expression for [£])

Attempts to model a statistically

00
D, . iy
kij (t) — J k‘w — /O kZJ (t)w (t)dt stationary process (fast mixing, no

saturation to bulk) by a steady state [k].

Higbie model Assumes that all fluid parcels stay at the
(1935) interface for a fixed amount of time, z. 2 g g —
\\ - | —— Higbie, te=1
1/te t < te —) k| = 2 D 1/2 \ — Dankwerts s=1
(t) = { 0"t k] = (D) R el
Note typo in T&K 9.3.33 (¢ vs. 1) \ 5 5 5

Danckwerts Fluid parcels have a greater chance of being
model (1951) replaced the longer they are at the interface.

P(t) = sexp(—st) —b [k] =/s[D]'/?

s - rate of surface renewal (1/sec)

(fraction of surface area replaced
U by fresh fluid in unit time)
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See T&K §9.4

Bubbles, Drops, Jets

4%

Spheres Channels Cylinders
Dit
Fo) = L

For “small” Fo (Fo«1), we are safe to use surface renewal
concepts. What happens at “large” Fo (Fo—1)?

7 Ax; = x;1 — <xz> x)  -“mixing cup” average
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See T&K §9.4

Fractional Approach to EQ

(Jo) = k2N = alk*)(zo (@) X« is changing!

(NO) — Ct[ [ ‘ (this solution is not valid)

(210 — (z1)) For a spherical droplet/particle:
F = 5 .
(10 — 711) ey 6 1 272 /
\U/ [F]— EZW s FOref[DH
=1
(xg — (x)) = [F](xg —x;) Multicomponent D = Dl D Fo,.; = Dref%

Xo - initial/boundary composition (t=0) et

X1 - interface composition (constant in time) 6 .

(x) - average composition (changing in time), use in place of x. hote: "> Z m =1

m=1
Sh [ ] 27“()[ ] Sherwood number related to dF/dFo.
o0 o0 —1
2 9 2 1 2 \ | remember that these
= 3 Z pa [— - D/ ] [Z m2 © - Forer [D /H \| are matrix functions!
m=1
g
Fo,ef = 00 = Sh = % 2[[] - [k] = B—[D] See fig. 9.7 (LHopital’s rule)
To
Limiting cases: ,
U Foref <1 = [k] = —=[D]"/?
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