
“Unsteady” Mass-
Transfer Models

ChEn 6603

See T&K Chapter 9
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Outline

Context for the discussion
Solution for transient binary diffusion with constant ct, Nt.
Solution for multicomponent diffusion with ct, Nt.
Film theory revisited (surface renewal models)
Transient diffusion in droplets, bubbles
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Context
Film theory - so far we assumed steady state, no 
reaction in bulk (only potentially at interface)
• Mass Transfer Coefficients used to simplify problem - don’t fully 

resolve diffusive fluxes.

• Bootstrap problem solved (via definition of [β]) to obtain total 
species fluxes.

Unsteady cases?
• What if we want to know the transient concentration profiles?

• What if we want to consider the effects of transient (perhaps 
turbulent) mixing near the interface?

Here we consider unsteady film-theory approaches...

Hung Le and Parviz Moin.
http://www.stanford.edu/group/ctr/gallery/003_2.html
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Solution Options

Solve the problem numerically
• Allows us to incorporate “full” description of the physics
‣may be quite complex (particularly if we must solve for a non-trivial velocity profile...)

• Could also simplify portions (constant [D], ct, etc.)
• Can solve this for a variety of BCs, ICs

Make enough assumptions/simplifications to solve this analytically
• Different BC/IC may require different form for analytic solution
• We already did this for effective binary and linearized theory for a few simple 

problems (2-bulb problem, Loschmidt tube)
‣T&K chapters 5 & 6.

• Here we show a few more techniques, based on unsteady film theory
‣Don’t resolve mass transfer completely - get a coarser description of the diffusive fluxes...

Describes evolution of ci at all points in 
space/time, but requires Ni, which may involve 

solution of the momentum equations...

�ci

�t
= �⇤ · Ni + ri

Approximation for 
diffusive flux (total flux).

(J) = ct[k•](�x)
(N) = [�](J)
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Binary Formulation (1/3)

ct
�xi

�t
= �⇤ · Ni

What are the assumptions?

What happened here?

ct
�xi

�t
+ Nt

�xi

�z
= � �

�z
Ji

�ci

�t
= �⇤ · Ni + ri

One-dimensional...
BCs & ICs

z ≥ 0,      t =0,     xi=xi∞.         (Initial condition)
z = 0,      t >0,     xi=xi0.   (Boundary condition)
z → ∞,    t >0,     xi=xi∞.   (Boundary condition)

valid for “short” 
contact times
(more later)

ct
�xi

�t
+ Nt ·⇤xi = �⇤ · Ji

(binary)

Problem statement: 
semi-infinite diffusion

See T&K 9.2

�x1

�t
+

Nt

ct

�x1

�z
= D

�2x1

�z2
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Binary Formulation (2/3)
Observation: since x is dimensionless, z, t, D must appear 
in a dimensionless combination in the solution.

⇥

⇥t
=

d

d�

⇥�

⇥t
= �1

2

�

t

d

d�

⇥

⇥z
=

d

d�

⇥�

⇥z
=

�

z

d

d�

⇥2

⇥z2
=

d2

d�2

✓
⇥�

⇥z

◆2

=
�2

z2
d

d�

� =
zp
4t

ct

✓
��

2t

◆
dx

d�
+Nt

✓
�

z

◆
dx

d�
= ctDi

�2

z2
d2x

d�2
✓
�2� +

Nt

ct

z

�

◆
dx

d�
= D

d2x

d�2

D
d2x

d�2
+ 2(� � ⇥)

dx

d�
= 0

chosen for convenience, 
ζ2/D is dimensionless

� ⌘ Nt

ct

p
t

x1 = x1,0 � = 0

x1 = x1,1 � = 1

x1 � x1,0

x1,1 � x1,0
=

1� erf
⇣

��⇥p
D

⌘

1 + erf
⇣

⇥p
D

⌘

Solve using 
order 

reduction
Note that this 
is a function of 
both z and t.

�x1

�t
+

Nt

ct

�x1

�z
= D

�2x1

�z2
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Binary Formulation (3/3)

J1,0 = ct

r
D

�t

exp

⇣
��2

D

⌘

1 + erf

⇣
�p
D

⌘
(x1,0 � x1,1)

J1,0 = ct

r
D

�t
(x1,0 � x1,1) � =

exp
⇣

��2

D

⌘

1 + erf
⇣

�p
D

⌘

Low-flux limit (as Nt→0)

k =

r
D

�t

Calculate J1 
at z=0,x1 � x1,0

x1,1 � x1,0
=

1� erf
⇣

��⇥p
D

⌘

1 + erf
⇣

⇥p
D

⌘

Mass Transfer Coefficients (binary system):

J1,0 = ctk�(x1,0 � x1,�) = ctk
•(x1,0 � x1,�)

N1,0 = ct�0k
•(x1,0 � x1,�)

What happens to J1 as z→∞?
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Multicomponent System
� =

zp
4t

See T&K 9.3.1-9.3.2

This has the analytic solution (see T&K 9.3.1-9.3.2):

Low-flux limit (as Nt→0) J0 =
ctp
�t

[D]
1
2 (x0 � x1)

[k] = (�t)�
1
2 [D]

1
2 [�] = exp

h
� [D]�

1
2

i h
[I] + erf[� [D]�

1
2

i�1

� ⌘ Nt

ct

p
t

(x� x1) =
h
[I]� erf

h
(� � ⇥) [D]�

1
2

ii h
[I] + erf

h
⇥ [D]�

1
2

ii�1
(x0 � x1)

Possible approaches:
• Solve the transient problem (beware of 

the “short” time assumption)
• Use this information to formulate other 
steady-state models (e.g. turbulent 
mixing from bulk to surface)

remember that these 
are matrix functions!

(J0) = ct[k][�](x0 � x⇥) = ct[k•](x0 � x⇥)
(N0) = ct[�0][k•](x0 � x⇥)

�(x)

�t
+

Nt

ct

�(x)

�z
= [D]

�2(x)

�z2

(J0) =
ctp
⇡t

[D]

1
2
exp

h
� [D]

� 1
2

i h
[I] + erf

h
� [D]

� 1
2

ii�1
(x0 � x1)
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Surface Renewal Models

(J), (N) are functions of time 
since [k] is a function of time.

How would we handle this problem?

Idea: develop a model for k that 
approximates the effects of 
transients near the surface.

[k] = (�t)�
1
2 [D]

1
2

Concept:
“Fresh” fluid from bulk is transported to the interface, where diffusion occurs for some 
time, t.  Then this is transported back to the bulk and replaced by more “fresh” fluid.

Age distribution function, ψ(t), determines how long a fluid 
parcel is at the interface.  (will affect expression for [k])

z = 0, xi = xi0 t > 0
z � 0, xi = xi� t = 0

z ⇥⇤, xi = xi� t > 0

Initial & 
Boundary 
conditions:

Assumes that the “bulk” is unaffected by mass 
transfer (“short” contact times)

See T&K §9.1

(J0) = ct[k][�](x0 � x⇥) = ct[k•](x0 � x⇥)
(N0) = ct[�0][k•](x0 � x⇥)
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Surface-Renewal Models

Higbie model 
(1935)

Danckwerts 
model (1951)

�(t) = s exp(�st)

Assumes that all fluid parcels stay at the 
interface for a fixed amount of time, te.

Fluid parcels have a greater chance of being 
replaced the longer they are at the interface.

s - rate of surface renewal (1/sec)
(fraction of surface area replaced 

by fresh fluid in unit time)

�(t) =
�

1/te t � te
0 t > te

See T&K §9.1

kij =
� �

0
kij(t)�(t)dt

Attempts to model a statistically 
stationary process (fast mixing, no 

saturation to bulk) by a steady state [k].

→ [k] = 2�
�te

[D]1/2

Note typo in T&K 9.3.33 (t vs. te)

kij(t) =
�

Dij

�t

[k] =
�

s[D]1/2→

Age distribution function, ψ(t), determines how long a fluid 
parcel is at the interface.  (will affect expression for [k])

10Wednesday, April 4, 12



Bubbles, Drops, Jets
δ

Spheres Channels Cylinders

For “small” Fo (Fo«1), we are safe to use surface renewal 
concepts.   What happens at “large” Fo (Fo→1)?

�xi = xiI � ⇥xi⇤ 〈xi〉 - “mixing cup” average

[Fo] =
[D]t
�2

δ

δ

See T&K §9.4
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Fractional Approach to EQ

[Sh] = 2
3�2

⇤ ⇤⇧

m=1

exp
�
�m2�2 Foref [D⇥]

⇥
⌅ ⇤ ⇤⇧

m=1

1
m2 exp

�
�m2�2 Foref [D⇥]

⇥
⌅�1

Sh ⇥ [k] · 2r0[D]�1

Limiting cases:
Foref ⇥⌅ =⇤ Sh = 2

3�2[I] ⇤ [k] =
�2

3r0
[D]

Foref � 1 =⇤ [k] =
2⇧
�t

[D]1/2

remember that these 
are matrix functions!

(J0) = ct[k][�](x0 � x⇥) = ct[k•](x0 � x⇥)
(N0) = ct[�0][k•](x0 � x⇥)

x∞ is changing!
(this solution is not valid)

6
�2

⇥�

m=1

m�2 = 1

See fig. 9.7 (L’Hopital’s rule)

x0 - initial/boundary composition (t=0)
xI - interface composition (constant in time)
〈x〉 - average composition (changing in time), use in place of x∞.

[F ] =

⇤
[I]� 6

�2

⇥⇧

m=1

1
m2 exp

�
�m2�2 Foref [D�]

⇥
⌅

[D�] =
1

Dref
[D] Foref � Dref

t
r2
0

note:

See T&K §9.4

Binary

Multicomponent

F ⇥ (x10 � ⌅x1⇧)
(x10 � x1I)

⇤
(x0 � ⌅x⇧) = [F ](x0 � xI)

For a spherical droplet/particle:

Sherwood number related to ∂F/∂Fo.
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