Governing Equations for Multicomponent Systems

ChEn 6603

Outline

Preliminaries:

- Derivatives
- Reynolds' transport theorem (relating Lagrangian and Eulerian)
- Divergence Theorem
© Governing equations
- total mass, species mass, momentum, energy
- weak forms of the governing equations
- Other forms of the energy equation
- the temperature equation
\& Examples
- Couette flow - viscous heating
- Batch reactor

Derivatives

$\frac{\partial}{\partial t} \quad$ Time-rate of change at a fixed position in space.
$\frac{\mathrm{d}}{\mathrm{d} t} \quad$ Time-rate of change as we move through space with arbitrary velocity (not necessarily equal to the fluid velocity)

$$
\frac{\mathrm{d}}{\mathrm{~d} t}=\frac{\partial}{\partial t}+\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t} \cdot \nabla=\frac{\partial}{\partial t}+\frac{\mathrm{d} x}{\mathrm{~d} t} \frac{\partial}{\partial x}+\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\partial}{\partial y}+\frac{\mathrm{d} z}{\mathrm{~d} t} \frac{\partial}{\partial z}=\frac{\partial}{\partial t}+\mathbf{u}^{a} \cdot \nabla
$$

$\frac{\mathrm{D}}{\mathrm{D} t} \quad$ Time-rate of change as we move through space at the
$\overline{\mathrm{D} t} \quad$ fluid mass-averaged velocity.

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{~d} t}=\mathbf{v} \quad \rightarrow \frac{\mathrm{d} x}{\mathrm{~d} t}=v_{x}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=v_{y}, \quad \frac{\mathrm{~d} z}{\mathrm{~d} t}=v_{z} \\
& \frac{\mathrm{D}}{\mathrm{D} t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla
\end{aligned}
$$

D / Dt is known as the "material derivative" or "substantial derivative"

Example: $T=\sin (\omega t)+x+5 y \rightarrow \frac{\mathrm{~d} T}{\mathrm{~d} t}=\omega \cos (\omega t)+u_{x}^{a}+5 u_{y}^{a}$

$$
\frac{\mathrm{D} T}{\mathrm{D} t}=\omega \cos (\omega t)+v_{x}+5 v_{y}
$$

Can you have a steady flow field where d / dt is unsteady?

Lagrangian vs. Eulerian

Let Ψ be any field function that is continuous in space and time.
$\mathcal{V}_{\Psi}(t)$ A Lagrangian volume that defines a closed system for Ψ

Closed system: $\mathcal{V}_{\Psi}(t)$ defined by \mathbf{u}_{Ψ}
$\mathrm{V}(t)$ An Eulerian volume defined arbitrarily in space and time.
May have flux through boundaries since it is NOT a closed system!

$$
\mathcal{V}_{\Psi}\left(t_{o}-\Delta t\right)
$$

$$
\mathcal{V}_{\Psi}\left(t_{o}\right)
$$

$$
\mathrm{V}\left(t_{o}\right)
$$

$$
\mathcal{V}_{b}\left(t_{o}\right)=\mathrm{V}\left(t_{o}\right)
$$

For a continuous field $\Psi(\mathbf{x}, t)$ we relate the Lagrangian and Eulerian descriptions as

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{\Psi}(t)} \Psi \mathrm{dV}=\int_{\mathrm{V}(t)} \frac{\partial \Psi}{\partial t} \mathrm{dV}+\int_{\mathrm{S}(t)} \Psi \mathbf{u}_{\Psi} \cdot \mathbf{a} \mathrm{d} S
$$

What does each term represent?

Reynolds' Transport Theorem ${ }^{\dagger}$

talso known as the Leibniz formula

Intensive \& Extensive Properties

B - extensive quantity
b - intensive quantity (B per unit mass) $\rho b-B$ per unit volume

$$
B=\int_{V} \rho b \mathrm{dV}
$$

Note: if we use moles rather than mass, we obtain the partial molar properties (also intensive)

Note: if ρ and b are continuous functions then so is ρb.

The Lagrangian Volume "Problem"

$\underbrace{\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathcal{V}_{b}(t)} \rho b \mathrm{~d} \mathrm{~V}}_{\frac{\mathrm{d} B}{\mathrm{~d} t}}=\int_{\mathrm{V}(t)} \frac{\partial \rho b}{\partial t} \mathrm{dV}+\int_{\mathrm{S}(t)} \mathbf{n}_{b} \cdot \mathbf{a} \mathrm{dS} \quad$ Reynolds' transport theorem

$$
\begin{aligned}
\mathbf{n}_{b} & =\rho b \mathbf{u}_{b} & \mathbf{j}_{b}^{a}=\text { mass diffusive flux of } b \text { relative } \\
& =\rho b \mathbf{u}^{a}+\mathbf{j}_{b}^{a} & \text { to reference velocity } \mathbf{u}^{a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{b}(t)} \rho b \mathrm{dV} & =\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{a}(t)} \rho b \mathrm{dV}+\int_{\mathcal{S}_{a}(t)} \mathbf{j}_{b}^{a} \cdot \mathbf{a d S} \longleftarrow
\end{aligned} \begin{gathered}
\begin{array}{c}
\text { Relates a closed Lagrangian } \\
\text { system moving at } \mathbf{u}_{b} \text { to an open } \\
\text { Lagrangian system moving at } \mathbf{u}^{a} .
\end{array} \\
\\
\end{gathered}
$$

In a multicomponent system, we have many velocities! That means that we have different definitions of the Lagrangian volume for each property b !

The Divergence Theorem

Also called Gauss' theorem, Ostrogradsky's theorem or the Gauss-Ostrogradsky theorem

For any vector field \mathbf{q},

$$
\int_{\mathrm{S}(t)} \mathbf{q} \cdot \mathbf{a} \mathrm{d} S=\int_{\mathrm{V}(t)} \nabla \cdot \mathbf{q} \mathrm{dV}
$$

This is very useful when moving from macroscopic (integral) balances to differential balances.

Can also be written for scalar \& tensor fields:

$$
\begin{aligned}
\int_{\mathrm{V}(t)} \nabla \phi \mathrm{dV} & =\int_{\mathrm{S}(t)} \phi \mathbf{a} \mathrm{dS} \\
\int_{\mathrm{V}(t)} \nabla \cdot \boldsymbol{\tau} \mathrm{dV} & =\int_{\mathrm{S}(t)} \boldsymbol{\tau} \cdot \mathbf{a} \mathrm{dS}
\end{aligned}
$$

useful for transforming the momentum equations ($\mathrm{p} \& \mathrm{~T}$)

Using the divergence theorem, we can rewrite the Reynolds Transport Theorem as

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{b}(t)} \rho b \mathrm{~d} \mathbf{V}=\frac{\mathrm{d} B}{\mathrm{~d} t} & =\int_{\mathbf{V}(t)} \frac{\partial \rho b}{\partial t} \mathrm{~d} \mathbf{V}+\int_{\mathbf{S}(t)} \mathbf{n}_{b} \cdot \mathbf{a d S} \\
& =\int_{\mathbf{V}(t)}\left(\frac{\partial \rho b}{\partial t}+\nabla \cdot \mathbf{n}_{b}\right) \mathrm{d} \mathbf{V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{n}_{b}=\rho b \mathbf{u}_{b} \\
&=\rho b \mathbf{u}^{a}+\mathbf{j}_{b}^{a} \\
& \text { mass flux of } b .
\end{aligned}
$$

Deriving Transport Equations for Intensive Properties

I. Define B and b.
2. Determine $\mathrm{d} B / \mathrm{d} t$ (change in B in a closed system) This typically comes from some law like Newton's law, thermodynamics laws, etc.

Using a closed system is the most convenient for deriving the equations, but note that each B has a (potentially) different definition for the system.

$$
\text { Lagrangian Form: } \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{b}(t)} \rho b \mathrm{dV}=\frac{\mathrm{d} B}{\mathrm{~d} t}=? \quad \begin{gathered}
\text { If you need to use an "open" } \\
\left.\begin{array}{c}
\text { Lagrangian system, see the notes on } \\
\text { the Lagrangian volume "Problem". }
\end{array} . . \begin{array}{c}
\text { Le }
\end{array}\right]
\end{gathered}
$$

3. Construct the governing equations in Lagrangian or Eulerian form.

$$
\text { Eulerian Form: } \frac{\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{b}(t)} \rho b \mathrm{~d} \mathrm{~V}=\frac{\mathrm{d} B}{\mathrm{~d} t}}{\text { from step 2 }}=\int_{\mathbf{V}(t)} \frac{\partial \rho b}{\partial t} \mathrm{~d} \mathrm{~V}+\int_{\mathrm{S}(t)} \mathbf{n}_{b} \cdot \mathbf{a} \mathrm{~d} \mathrm{~S}
$$

Total Mass (Continuity)

Mass: $\quad B=m, \quad b=\frac{B}{m}=1$
$\begin{gathered}\text { Total mass is constant } \\ \text { in a closed system }\end{gathered} \Rightarrow \frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathcal{V}_{\rho}(t)} \rho \mathrm{dV}=\frac{\mathrm{d} m}{\mathrm{~d} t}=0$
What defines $\mathcal{V}_{\rho}(t)$?
Lagrangian form of the continuity equation.

Reynolds' transport theorem

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{b}(t)} \rho b \mathrm{~d} \mathrm{~V}=\frac{\mathrm{d} B}{\mathrm{~d} t}=\int_{\mathrm{V}(t)} \frac{\partial \rho b}{\partial t} \mathrm{~d} \mathrm{~V}+\int_{\mathrm{S}(t)} \mathbf{n}_{b} \cdot \mathbf{a} \mathrm{dS}
$$

Helps us move between Lagrangian and Eulerian...

Eulerian forms:

$$
\begin{aligned}
0 & =\int_{\mathbf{V}(t)} \frac{\partial \rho}{\partial t} \mathrm{~d} \mathrm{~V}+\int_{\mathrm{S}(t)} \mathbf{n}_{t} \cdot \mathbf{a d S} \\
0 & =\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{n}_{t} \\
0 & =\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{v} \\
0 & =\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{u}+\sum_{i=1}^{n} \nabla \cdot \mathbf{j}_{i}^{u}
\end{aligned}
$$

You will explore various forms of the continuity equation in your homework...

Lagrangian \& Eulerian - A Very Simple Example

What is the density in a piston-cylinder system as a function of time?

- Cylinder stroke: 30 cm
- Head height: $h_{0}=2 \mathrm{~mm}$

Assumptions:

I. Initial conditions: bottom of cylinder air at STP
2. Adiabatic system
3. Constant composition in space and time.
4. Spatially uniform density
5. $h(t)=h_{0}+L / 2[1+\cos (\Omega t)]-$ this is a simplified description -see http://en.wikipedia.org/wiki/Piston_motion_equations
6. Closed system (no valves)

Eulerian:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=-\nabla \cdot \mathbf{n}_{t}=-\nabla \cdot(\rho \mathbf{v})=-\rho \nabla \cdot \mathbf{v} \\
& \text { key } \underset{\text { step! }}{\boldsymbol{y}} \int_{\mathrm{V}_{(t)}} \frac{\partial \rho}{\partial t} \mathrm{dV}=-\rho \int_{\mathrm{V}(t)} \nabla \cdot \mathbf{v} \mathrm{dV}=-\rho \int_{\mathrm{S}(t)} \mathbf{v} \cdot \mathbf{a} \mathrm{dS} \\
& \begin{array}{rc}
\mathrm{V}(t) \frac{\partial \rho}{\partial t}= & \rho \pi R^{2} v \\
\partial \rho & v(t) \quad \text { Homework: show that these are equivalent. }
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\mathrm{d} m \\
\mathrm{~d} t
\end{array}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\rho \pi R^{2} h\right)=0 \\
& \frac{\partial \rho}{\partial t}=\rho \frac{v(t)}{h(t)} \xrightarrow{\text { Homework: show that these are equivalen. }} \mathrm{d} t=\mathrm{d} t(\rho \pi R h)=0 \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\mathcal{V}_{\rho}(t)} \rho \mathrm{d} \mathrm{~V}=\frac{\mathrm{d} m}{\mathrm{~d} t}=0 \\
& m=\rho \mathcal{V}=\rho \pi R^{2} h
\end{aligned}
$$

SDesins Nacs

$B=m_{i}=m \omega_{i}$

In a closed system, the mass of species i changes only due to chemical reaction:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathcal{V}_{\omega_{i}}(t)} \rho \omega_{i} \mathrm{~d} \mathrm{~V}=\frac{\mathrm{d} m_{i}}{\mathrm{~d} t}=\int_{\mathcal{V}_{\omega_{i}}(t)} s_{i} \mathrm{~d} \mathrm{~V}
$$

Lagrangian form of species conservation. s_{i} - mass reaction rate per unit volume.

NOTE: this is for a closed system on species i.
Is this the same system as for species j ?

Eulerian forms:

$$
\begin{aligned}
\int_{\mathrm{V}(t)} s_{i} \mathrm{dV} & =\int_{\mathrm{V}(t)} \frac{\partial \rho \omega_{i}}{\partial t} \mathrm{dV}+\int_{\mathrm{S}(t)} \mathbf{n}_{i} \cdot \mathbf{a} \mathrm{dS} \\
\frac{\partial \rho \omega_{i}}{\partial t} & =-\nabla \cdot \mathbf{n}_{i}+s_{i}
\end{aligned}
$$

- Note that fluxes appear in the Eulerian form.
- If the total flux is not readily available, we decompose it into convective and diffusive components, $\mathbf{n}_{i}=\rho_{i} \mathbf{v}+\mathbf{j}_{i} \ldots$
- The total continuity equation is readily obtained by summing the species equations.

Species Balance Example: Stefan Tube

Species balance equations (no reaction):

$$
\begin{aligned}
& \frac{\partial \rho \omega_{i}}{\partial t}=\frac{\partial \rho_{i}}{\partial t}=-\nabla \cdot \mathbf{n}_{i}, \\
& \frac{\partial c x_{i}}{\partial t}=\frac{\partial c_{i}}{\partial t}=-\nabla \cdot \mathbf{N}_{i}
\end{aligned}
$$

At steady state (ID),

$$
\begin{aligned}
\mathbf{n}_{i} & =\alpha_{i} \\
\mathbf{N}_{i} & =\beta_{i}
\end{aligned}
$$

Momentum - Pure Fluid

$$
\begin{aligned}
& B=m \mathbf{v} \\
& b=\frac{m \mathbf{v}}{m}=\mathbf{v}
\end{aligned}
$$

$$
\frac{\mathrm{d} B}{\mathrm{~d} t}=\int_{\mathrm{V}(t)} \frac{\partial \rho b}{\partial t} \mathrm{~d} \mathbf{V}+\int_{\mathrm{S}(t)} \rho b \mathbf{u}_{b} \cdot \mathbf{a} \mathrm{~d} \mathrm{~S}
$$

Recall, for a pure fluid, there exists
a single unique system velocity, \mathbf{v}.
$\begin{aligned} & \text { Newton's second } \\ & \text { law of motion: }\end{aligned} \frac{\mathrm{d} B}{\mathrm{~d} t}=m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=\sum \mathbf{F}_{\text {Extenal }}$

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=-\int_{\mathcal{S}(t)}(\boldsymbol{\tau} \cdot \mathbf{a}+p \mathbf{a}) \mathrm{d} \mathrm{~S}+\int_{\mathcal{V}(t)} \rho \mathbf{f} \mathrm{d} \mathrm{~V} \quad \begin{aligned}
& \text { Lagrangian integral form of } \\
& \text { the momentum equations }
\end{aligned}
$$

$$
\begin{array}{lr}
\int_{\mathbf{V}(t)} \frac{\partial \rho \mathbf{v}}{\partial t} \mathrm{dV}+\int_{\mathrm{S}(t)} \rho \mathbf{v} \mathbf{v} \cdot \mathbf{a d S}=-\int_{\mathrm{S}(t)}(\boldsymbol{\tau} \cdot \mathbf{a}+p \mathbf{a}) \mathrm{d} \mathrm{~S}+\int_{\mathbf{V}(t)} \rho \mathbf{f} \mathrm{d} \mathbf{V} \\
\frac{\partial \rho \mathbf{v}}{\partial t}=-\nabla \cdot \rho \mathbf{v} \mathbf{v}-\nabla \cdot \boldsymbol{\tau}-\nabla p+\rho \mathbf{f} & \underline{\text { Eulerian forms }}
\end{array}
$$

Momentum Example: Steady Stirred Tank

$$
\int_{\mathrm{V}(t)} \frac{\partial \rho \mathbf{v}}{\partial t} \mathrm{~d} \mathbf{V}+\int_{\mathrm{S}(t)} \rho \mathbf{v} \mathbf{v} \cdot \mathbf{a} \mathrm{d} \mathrm{~S}=-\int_{\mathrm{S}(t)}(\boldsymbol{\tau} \cdot \mathbf{a}+p \mathbf{a}) \mathrm{d} \mathrm{~S}+\int_{\mathbf{V}(t)} \rho \mathbf{f} \mathrm{d} \mathrm{~V}
$$

Choose the liquid-tank \& liquid-air interface as the volume over which we will perform the balance.
$\int_{\mathbf{V}(t)} \frac{\partial \rho \mathbf{v}}{\partial t} \mathrm{~d} \mathbf{V}$
$\int_{\mathrm{S}(t)} \rho \mathbf{v} \mathbf{v} \cdot \mathbf{a} \mathrm{d} S$
$\int_{\mathrm{S}(t)} \boldsymbol{\tau} \cdot \mathbf{a}+p \mathbf{a} \mathrm{~d} \mathrm{~S}$
$\int_{V(t)} \rho \mathbf{f} \mathrm{d} V$
at steady state this term must be zero
only nonzero if we have flow across the surface (therefore zero for this situation)

Stresses at the surfaces are nonzero if there are nonzero velocity gradients. What balances this force? What happens if it is not balanced?
$\mathbf{f}=\mathbf{g}$ - acceleration due to gravity. How is this force balanced?

Momentum - Multicomponent Mixtures

What velocity defines the momentum?

species specific momentum (momentum per unit volume for species i)

Velocity is an intensive quantity, momentum per unit mass

What velocity advects the momentum?

It seems reasonable that a mass-averaged velocity would advect the mass-averaged velocity (specific momentum)...
$\begin{aligned} & \text { Newton's second } \\ & \text { law of motion: }\end{aligned} \quad \frac{\mathrm{d} B}{\mathrm{~d} t}=m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=\sum \mathbf{F}_{\text {Extenal }}$

Body forces may act differently on different species: $\quad \sum_{i=1} \rho \omega_{i} \mathbf{f}_{i} \quad$ on species i.

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=-\int_{\mathcal{S}_{\rho v}(t)}(\boldsymbol{\tau} \cdot \mathbf{a}+p \mathbf{a}) \mathrm{d} \mathrm{~S}+\int_{\mathcal{V}_{\rho v}(t)} \sum_{i=1}^{n_{s}} \rho \omega_{i} \mathbf{f}_{i} \mathrm{dV} \quad \begin{aligned}
& \text { Lagrangian integral form of } \\
& \text { the momentum equation }
\end{aligned}
$$

$$
\begin{array}{rlrl}
\int_{\mathbf{V}(t)} \frac{\partial \rho \mathbf{v}}{\partial t} \mathrm{~d} \mathbf{V} & =-\int_{\mathrm{S}(t)} \rho \mathbf{v} \mathbf{v} \cdot \mathbf{a} \mathrm{dS}-\int_{\mathbf{S}(t)}(\boldsymbol{\tau} \cdot \mathbf{a}+p \mathbf{a}) \mathrm{d} \mathrm{~S}+\int_{\mathbf{V}(t)} \sum_{i=1}^{n_{s}} \rho \omega_{i} \mathbf{f}_{i} \mathrm{~d} \mathbf{V} \\
\frac{\partial \rho \mathbf{v}}{\partial t} & =-\nabla \cdot(\rho \mathbf{v} \mathbf{v})-\nabla \cdot \boldsymbol{\tau}-\nabla p+\sum_{i=1}^{n_{s}} \rho \omega_{i} \mathbf{f}_{i} & \underline{\text { Eulerian forms }}
\end{array}
$$

Differences from pure fluid momentum equation:

- body force term includes forces acting on each species
- velocity is a mass-averaged velocity!

Total Internal Energy

$$
B=E_{0}=m e_{0} \quad b=e_{0} \quad E_{0}-\text { total internal energy (kinetic and internal energy) }
$$

$$
e_{0}=\frac{1}{2} \mathbf{v} \cdot \mathbf{v}+e \quad \begin{aligned}
& \text { First law of } \\
& \text { thermodynamics: }
\end{aligned} \quad \frac{\mathrm{d} E_{0}}{\mathrm{~d} t}=\frac{\mathrm{d} Q}{\mathrm{~d} t}+\frac{\mathrm{d} W}{\mathrm{~d} t}
$$

$$
=\frac{\frac{1}{2} \mathbf{v} \cdot \mathbf{v}}{\substack{\text { specific } \\
\text { kinetic } \\
\text { energy }}} \frac{\frac{p}{\rho}+h}{\begin{array}{c}
\text { specific } \\
\text { internal } \\
\text { energy }
\end{array}}
$$

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=-\int_{\mathcal{S}_{e_{0}}(t)} \mathbf{q} \cdot \mathbf{a} \mathrm{d} S \quad \text { What would } \mathbf{q} \text { include? }
$$

$$
\frac{\mathrm{d} W}{\mathrm{~d} t}=? ? ?
$$

What is the rate of work done on the closed system?

\mathbf{q} - total diffusive heat flux (more later)
$\boldsymbol{\tau}$ - stress tensor
\mathbf{f}_{i} - body force on species i.

Note: here we have assumed that the mass averaged velocity is the appropriate one...

Total Internal Energy (cont.)

Lagrangian Form:

$$
\frac{d E_{0}}{d t}=\int_{\mathcal{V}_{e_{0}}(t)} \rho e_{0} \mathrm{dV}=-\int_{\mathcal{S}_{e_{0}}(t)} \mathbf{q} \cdot \mathbf{d} \mathrm{dS}-\int_{\mathcal{S}_{e_{0}}(t)}(\boldsymbol{\tau} \cdot \mathbf{v}+p \mathbf{v}) \cdot \mathbf{a} d S+\int_{\mathcal{V}_{e_{0}}(t)} \sum_{i=1}^{n_{s}} \mathbf{f}_{i} \cdot \mathbf{n}_{i} \mathrm{dV}
$$

Reynolds' Transport Theorem: $\quad \int_{V_{b}(t)} \rho b \mathrm{dV}=\int_{\mathrm{V}(t)} \frac{\partial \rho b}{\partial t} \mathrm{~d} \mathrm{~V}+\int_{\mathrm{S}(t)} \rho b \mathbf{u}_{b} \cdot \mathbf{a d S}$

Eulerian Integral Form:

time rate of change of total internal energy in the volume
advective transport of total internal energy across the surfaces

Energy dissipation from viscous and pressure work on the system
work done by body forces due to both advection and diffusion

Eulerian Differential form:

$$
\frac{\partial \rho e_{0}}{\partial t}+\nabla \cdot \rho e_{0} \mathbf{v}=-\nabla \cdot \mathbf{q}-\nabla \cdot(\boldsymbol{\tau} \cdot \mathbf{v}+p \mathbf{v})+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{n}_{i}
$$

Recap of Governing Equations

[^0]Continuity: $\quad \frac{\partial \rho}{\partial t}=-\nabla \cdot \rho \mathbf{v}$
Species mass: $\frac{\partial \rho_{i}}{\partial t}=-\nabla \cdot \rho_{i} \mathbf{v}-\nabla \cdot \underline{\mathbf{j}_{i}}+\underline{s_{i}}$
This set of equations is the most frequently used set for many engineering applications.

Momentum: $\quad \frac{\partial \rho \mathbf{v}}{\partial t}=-\nabla \cdot(\rho \mathbf{v} \mathbf{v})-\nabla \cdot \underline{\boldsymbol{\tau}}-\nabla \underline{p}+\sum_{i=1}^{n_{s}} \rho_{i} \mathbf{f}_{i}$

$$
\begin{aligned}
& \text { Total Internal } \frac{\partial \rho e_{0}}{\partial t}=-\nabla \cdot \rho e_{0} \mathbf{v}-\nabla \cdot \underline{\mathbf{q}}-\nabla \cdot(\underline{\boldsymbol{\tau}} \cdot \mathbf{v}+\underline{p \mathbf{v}})+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{n}_{i} \\
& \text { Energy: }
\end{aligned}
$$

Chemical source terms - requires a chemical mechanism relating T, p, ω_{i} to s_{i}.
Diffusive fluxes - require constitutive relationships.

Pressure - requires equation of state.

Thermodynamics: solve for
T from ω_{i}, p and e_{0}.

$$
h=\sum_{i=1}^{n} h_{i} \omega_{i}
$$

$$
h_{i}=h_{i}^{\circ}+\int_{T_{i}^{\circ}}^{T} c_{p, i}(T) \mathrm{d} T
$$

The "Heat Flux" - a preview

- Fourier term (due to ∇T)
- Diffusing species carry energy: $\sum h_{\mathbf{i} \mathbf{j}_{i}}$

$$
\begin{aligned}
\mathbf{q}_{\text {Fourier }} & =-\lambda \nabla T \\
\mathbf{q}_{\text {Species }} & =\sum_{i=1}^{n} h_{i} \rho \omega_{i}\left(\mathbf{u}_{i}-\mathbf{v}\right) \\
& =\sum_{i=1}^{n} h_{i} \mathbf{j}_{i}
\end{aligned}
$$

- Radiative heat flux: $\sigma \varepsilon T^{4}$ (or more complicated)
\& More soon...

Mass vs. Molar Equations

Equations can be written in molar form as well.

- can be derived using Reynolds' Transport Theorem.
- Sometimes it is more convenient.
- ideal gas at constant T, p, no reaction
$\frac{\partial \rho}{\partial t}=-\nabla \cdot \rho \mathbf{v}$
$\frac{\partial c_{t}}{\partial t}=-\nabla \cdot c_{t} \mathbf{u}+\sum_{i=1}^{n} \frac{s_{i}}{M_{i}} \quad$ molar form
Typically when solving the momentum equations, the mass form is used.
- sometimes the molar form of the species equations are used when momentum is not being solved

"Weak" Forms of the Governing Equations

The "weak form" of a governing equation is obtained by subtracting the continuity equation.

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{v}=0 \\
& \frac{\partial \rho}{\partial t}+\mathbf{v} \cdot \nabla \rho+\rho \nabla \cdot \mathbf{v}=0 \quad \frac{\mathrm{D}}{\mathrm{D} t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla \\
& \frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \mathbf{v}=0
\end{aligned}
$$

Example: species

$$
\begin{aligned}
& \frac{\partial \rho \omega_{i}}{\partial t}+\nabla \cdot \rho \omega_{i} \mathbf{v}=-\nabla \cdot \mathbf{j}_{i}+s_{i} \\
& \rho \frac{\partial \omega_{i}}{\partial t}+\omega_{i} \frac{\partial \rho}{\partial t}+\rho \mathbf{v} \cdot \nabla \omega_{i}+\omega_{i} \nabla \cdot \rho \mathbf{v}= \\
& \omega_{i}\left(\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{v}\right)+\rho\left(\frac{\partial \omega_{i}}{\partial t}+\mathbf{v} \cdot \nabla \omega_{i}\right)= \\
& \xrightarrow[\substack{\text { substitute } \\
\text { continuity }}]{\longrightarrow} \rho \frac{\mathrm{D} \omega_{i}}{\mathrm{D} t}=-\nabla \cdot \mathbf{j}_{i}+s_{i} \quad \begin{array}{l}
\text { "Weak" form or } \\
\text { "nonconservative" form }
\end{array}
\end{aligned}
$$

Strong \& Weak Forms - Summary

Strong Form	Weak Form	
Continuity	$\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{v}=0$	$\frac{\mathrm{D} \rho}{\mathrm{D} t}=-\rho \nabla \cdot \mathbf{v}$
Species	$\frac{\partial \rho \omega_{i}}{\partial t}+\nabla \cdot \rho \omega_{i} \mathbf{v}=-\nabla \cdot \mathbf{j}_{i}+s_{i}$	$\rho \frac{\mathrm{D} \omega_{i}}{\mathrm{D} t}=-\nabla \cdot \mathbf{j}_{i}+s_{i}$
Momentum	$\frac{\partial \rho \mathbf{v}}{\partial t}+\nabla \cdot(\rho \mathbf{v v})=-\nabla \cdot \boldsymbol{\tau}-\nabla p+\rho \sum_{i=1}^{n} \omega_{i} \mathbf{f}_{i}$	$\rho \frac{\mathrm{Dv}}{\mathrm{D} t}=-\nabla \cdot \boldsymbol{\tau}-\nabla p+\rho \sum_{i=1}^{n} \omega_{i} \mathbf{f}_{i}$
Total internal energy	$\frac{\partial \rho e_{0}}{\partial t}+\nabla \cdot\left(\rho e_{0} \mathbf{v}\right)=-\nabla \cdot \mathbf{q}-\nabla \cdot(\boldsymbol{\tau} \cdot \mathbf{v})$	$\rho \frac{\mathrm{D} e_{0}}{\mathrm{D} t}=-\nabla \cdot \mathbf{q}-\nabla \cdot(\boldsymbol{\tau} \cdot \mathbf{v})$
$-\nabla \cdot(p \mathbf{v})+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{n}_{i}$		

$$
\frac{\mathrm{D}}{\mathrm{D} t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla
$$

Forms of the Energy Equation

Total internal energy equation:

$$
\frac{\partial \rho e_{0}}{\partial t}=-\nabla \cdot \rho e_{0} \mathbf{v}-\nabla \cdot \mathbf{q}-\nabla \cdot(\boldsymbol{\tau} \cdot \mathbf{v}+p \mathbf{v})+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{n}_{i}
$$

Internal energy equation: $\quad e_{0}=e+k=e+\frac{1}{2} \mathbf{v} \cdot \mathbf{v}$ from total internal energy equation

$$
\frac{\partial \rho e}{\partial t}+\nabla \cdot(\rho e \mathbf{v})=-\tau: \nabla \mathbf{v}-p \nabla \cdot \mathbf{v}-\nabla \cdot \mathbf{q}+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}
$$

Enthalpy equation: $h=e+\frac{p}{\rho} \Longrightarrow \frac{\partial \rho h}{\partial t}=\frac{\partial \rho e}{\partial t}+\frac{\partial p}{\partial t}$

$$
\frac{\partial \rho h}{\partial t}=\frac{\mathrm{D} p}{\mathrm{D} t}-\nabla \cdot(\rho h \mathbf{v})-\tau: \nabla \mathbf{v}-\nabla \cdot \mathbf{q}+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}
$$

Temperature Equation (I/2)

Thermodynamics: choose T, p, ω_{i} as independent variables.
Then the enthalpy differential is:

$$
\begin{aligned}
& \mathrm{d} h=\sum_{i=1}^{n}\left(\frac{\partial h}{\partial \omega_{i}}\right)_{T, p} \mathrm{~d} \omega_{i}+\left(\frac{\partial h}{\partial T}\right)_{\omega_{i}, p} \mathrm{~d} T+\left(\frac{\partial h}{\partial p}\right)_{T, \omega_{i}} \mathrm{~d} p \\
& h_{i} \equiv\left(\frac{\partial h}{\partial \omega_{i}}\right)_{T, p} \quad c_{p}=\left(\frac{\partial h}{\partial T}\right)_{\omega_{i, p}}=\sum_{i=1}^{n} \omega_{i} c_{p, i} \\
& \text { Species enthalpies } \\
&\text { Heat capacity (function of } T, \omega)
\end{aligned} \quad \begin{aligned}
\left(\frac{\partial h}{\partial p}\right)_{T, \omega_{i}} & =\hat{V}-T\left(\frac{\partial \hat{V}}{\partial T}\right)_{p, \omega_{i}} \\
& =\hat{V}(1-\alpha T) \quad \alpha \equiv \frac{1}{\hat{V}}\left(\frac{\partial \hat{V}}{\partial T}\right)_{p, \omega}
\end{aligned}
$$

$$
\left.\alpha \equiv \frac{1}{\hat{V}}\left(\frac{\partial \hat{V}}{\partial T}\right)_{p, \omega} \begin{array}{c}
\text { Coefficient of thermal } \\
\text { expansion } \\
\text { (from equation of state) }
\end{array}\right)
$$

$$
\mathrm{d} h=\sum_{i=1}^{n} h_{i} \mathrm{~d} \omega_{i}+c_{p} \mathrm{~d} T+\hat{V}(1-\alpha T) \mathrm{d} p
$$

Temperature Equation (2/2)

$$
\mathrm{d} h=\sum_{i=1}^{n} h_{i} \mathrm{~d} \omega_{i}+c_{p} \mathrm{~d} T+\hat{V}(1-\alpha T) \mathrm{d} p
$$

Solve for $\mathrm{d} T$ and multiply by ρ :

$$
\rho \frac{\mathrm{D} h}{\mathrm{D} t}=\frac{\mathrm{D} p}{\mathrm{D} t}-\tau: \nabla \mathbf{v}-\nabla \cdot \mathbf{q}+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}
$$

$$
\begin{aligned}
& \rho c_{p} \mathrm{~d} T=\rho \mathrm{d} h-(1-\alpha T) \mathrm{d} p-\sum_{i=1}^{n} h_{i} \rho \mathrm{~d} \omega_{i} \\
& -\nabla \cdot \mathbf{q}+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i} \\
& \rho \frac{\mathrm{D} \omega_{i}}{\mathrm{D} t}=-\nabla \cdot \mathbf{j}_{i}+s_{i}
\end{aligned}
$$

Substitute and simplify...

$$
\rho c_{p} \frac{\mathrm{D} T}{\mathrm{D} t}=\alpha T \frac{\mathrm{D} p}{\mathrm{D} t}-\tau: \nabla \mathbf{v}-\nabla \cdot \mathbf{q}+\sum_{i=1}^{n} h_{i}\left(\nabla \cdot \mathbf{j}_{i}-s_{i}\right)+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}
$$

Notes:

- For an ideal gas, $\alpha=1 / T$.
- If body forces act equally on species, then $\sum \mathbf{f}_{i} \cdot \dot{j}_{i}=0$.
- \mathbf{q} includes the term $\sum h_{i \mathbf{j}_{i} .}$. The net term is thus $\sum \mathbf{j}_{i} \cdot \nabla h_{i}$.

Example: Viscous Heating

Is Couette flow isothermal?

y=0

$$
\rho c_{p} \frac{\mathrm{D} T}{\mathrm{D} t}=\alpha T \frac{\mathrm{D} p}{\mathrm{D} t}-\tau: \nabla \mathbf{v}-\nabla \cdot \mathbf{q}+\sum_{i=1}^{n} h_{i}\left(\nabla \cdot \mathbf{j}_{i}-s_{i}\right)+\sum_{i=1}^{n} \mathbf{f}_{i} \cdot \mathbf{j}_{i}
$$

what happened to the convective terms?

$$
\rho c_{p} \frac{\partial T}{\partial t}=\alpha T \frac{\partial p}{\partial t}-\tau_{x y} \frac{\partial v_{x}}{\partial y}
$$

$$
\begin{aligned}
& \text { assume stead }(\partial t=\partial y \\
& \text { pressure field } \frac{\partial T}{\partial t}=-\frac{\tau_{x y}}{\rho c_{p}} \frac{\partial v_{x}}{\partial y} \text {, } \\
& =\frac{\mu \gamma^{2}}{\rho c_{p}}, \\
& =\frac{\nu}{c_{p}} \gamma^{2}
\end{aligned}
$$

Example: Batch Reactors

Derive the equations describing a well-mixed batch reactor.

Assumptions:

- Well-mixed (no spatial gradients).
- Constant volume.
- Closed system.

$$
\begin{aligned}
\int_{\mathbf{V}(t)} \frac{\partial \rho}{\partial t} \mathrm{~d} \mathbf{V} & =-\int_{\mathbf{S}(t)} \rho \mathbf{v} \cdot \mathbf{a d S} \\
\int_{\mathbf{V}(t)} \frac{\partial \rho \omega_{i}}{\partial t} \mathrm{dV} & =-\int_{\mathbf{S}(t)} \rho \omega_{i} \mathbf{v} \cdot \mathbf{a} \mathrm{~d} \mathbf{S}+\int_{\mathbf{V}(t)} s_{i} \mathrm{dV} \\
\int_{\mathbf{V}(t)} \frac{\partial \rho \mathbf{v}}{\partial t} \mathrm{dV} & =-\int_{\mathbf{S}(t)}(\rho \mathbf{v} \mathbf{v}+\boldsymbol{\tau}) \cdot \mathbf{a} \mathrm{d} \mathrm{~S}-\int_{\mathbf{S}(t)} p \mathbf{a} \mathrm{~d} \mathrm{~S}-\sum_{i=1}^{n} \int_{\mathbf{V}(t)} \rho_{i} \mathbf{f}_{i} \mathrm{dV} \\
\int_{\mathbf{V}(t)} \frac{\partial \rho e_{0}}{\partial t} \mathrm{dV} & =-\int_{\mathbf{S}(t)}\left(\rho e_{0} \mathbf{v}-\mathbf{q}-\boldsymbol{\tau} \cdot \mathbf{v}+p \mathbf{v}\right) \cdot \mathbf{a d S}+\sum_{i=1}^{n} \int_{\mathbf{V}(t)} \mathbf{f}_{i} \cdot \mathbf{n}_{i} \mathrm{dV}
\end{aligned}
$$

How do we simplify and solve these equations?

[^0]: Eulerian Governing Equations in
 Terms of a Mass-Averaged Velocity

