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Outline

Preliminaries:
• Derivatives

• Reynolds’ transport theorem (relating Lagrangian and Eulerian)

• Divergence Theorem

Governing equations
• total mass, species mass, momentum, energy

• weak forms of the governing equations

• Other forms of the energy equation
‣ the temperature equation

Examples
• Couette flow - viscous heating

• Batch reactor

2Wednesday, January 11, 12



Derivatives
�

�t

D
Dt

d
dt

Time-rate of change at a fixed position in space.

Time-rate of change as we move through space with arbitrary 
velocity (not necessarily equal to the fluid velocity)

Time-rate of change as we move through space at the 
fluid mass-averaged velocity.

D/Dt is known as the 
“material derivative” or 
“substantial derivative”

dx
dt

= v

dx

dt

= v

x

,

dy

dt

= v

y

,

dz

dt

= v

z

D
Dt
� �

�t
+ v ·⇥

T = sin(�t) + x+ 5yExample: Can you have a 
steady flow field 

where d/dt is 
unsteady?

dT

dt
= � cos(�t) + ua

x

+ 5ua

y

DT

Dt
= � cos(�t) + v

x

+ 5v
y

d

dt
=

�

�t
+

dx

dt
·� =

�

�t
+

dx

dt

�

�x
+

dy

dt

�

�y
+

dz

dt

�

�z
=

�

�t
+ u

a ·�
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For a continuous field Ψ(x,t) we relate the Lagrangian and Eulerian descriptions as

Reynolds’ Transport Theorem†

Let Ψ be any field function that is continuous in space and time.

V(t) An Eulerian volume defined 
arbitrarily in space and time.

May have flux through boundaries 
since it is NOT a closed system!

A Lagrangian volume that defines 
a closed system for Ψ

V (t)

Closed system: V (t)defined by uΨ

Lagrangian vs. Eulerian

What does each 
term represent?

dS
a

V(t
o

)
V (t

o

)

V (t
o

��t)

V
b

(t
o

) = V(t
o

)

d
dt

Z

V (t)
� dV =

Z

V(t)

��
�t

dV +
Z

S(t)
�u� · adS

†also known as the Leibniz formula
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Intensive & Extensive Properties
B - extensive quantity
b - intensive quantity (B per unit mass)
ρb - B per unit volume

Note: if ρ and b are continuous functions then so is ρb.

Reynolds’ Transport 
Theorem with Ψ=ρb:

B =
Z

V
�b dV

d
dt

Z

Vb(t)
�b dV

| {z }
dB
dt

=
Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
�bub · adS

ρbub=nb

Mass flux of b

Note: if we use moles rather than 
mass, we obtain the partial molar 

properties (also intensive)

dS
a

V(t
o

)
V (t

o

)

V (t
o

��t)

This equation will help us derive balance 
equations for mass, momentum, energy.
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The Lagrangian Volume “Problem”

dx1

dt
= v1

dx2

dt
= v2

dx

dt
= ua

Reynolds’ transport theorem

Relates a closed Lagrangian 
system moving at ub to an open 
Lagrangian system moving at ua.

Relates a closed Lagrangian system 
moving at ub to an Eulerian system.

d
dt

Z

Vb(t)
�b dV

| {z }
dB
dt

=
Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
nb · adS

d
dt

Z

Vb(t)
�b dV =

d
dt

Z

Va(t)
�b dV +

Z

Sa(t)
jab · adS

=
Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
nb · adS

= mass diffusive flux of b relative 
to reference velocity ua.

jab

In a multicomponent system, we have 
many velocities!  That means that we have 
different definitions of the Lagrangian 

volume for each property b!

dS
a

V(t
o

)
V (t

o

)

V (t
o

��t)

nb = �bub

= �bua + jab
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The Divergence Theorem
Also called Gauss’ theorem, Ostrogradsky’s 

theorem or the Gauss-Ostrogradsky theorem

Z

S(t)
q · adS =

Z

V(t)
� · qdV

For any vector field q,

This is very useful when moving 
from macroscopic (integral) balances 

to differential balances.

Using the divergence theorem, we can rewrite 
the Reynolds Transport Theorem as 

d

dt

Z

Vb(t)
�b dV =

dB

dt
=

Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
nb · a dS

=

Z

V(t)

✓
⇥�b

⇥t
+� · nb

◆
dV

mass flux of b.

nb = �bub

= �bua + jab

Can also be written for 
scalar & tensor fields:Z

V(t)
r� dV =

Z

S(t)
�a dS

Z

V(t)
r · ⌧ dV =

Z

S(t)
⌧ · a dS

useful for 
transforming 

the momentum 
equations
(p & τ)
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1. Define B and b.

2. Determine dB/dt (change in B in a closed system)  This typically comes from 
some law like Newton’s law, thermodynamics laws, etc.

Using a closed system is the most convenient for deriving the equations, but 
note that each B has a (potentially) different definition for the system.

3. Construct the governing equations in Lagrangian or Eulerian form.

Deriving Transport Equations for Intensive Properties

Lagrangian Form:

Eulerian Form:

from step 2

If you need to use an “open” 
Lagrangian system, see the notes on 
the Lagrangian volume “Problem”.

d
dt

Z

Vb(t)
�b dV =

dB

dt
=?

d
dt

Z

Vb(t)
�b dV =

dB

dt
=

Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
nb · adS
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Total Mass (Continuity)
Mass:

dS
a

V(t
o

)

V
b

(t
o

��t)

V
b

(t
o

)

Eulerian forms:

Total mass is constant 
in a closed system

d
dt

Z

V⇢(t)
� dV =

dm

dt
= 0

What defines         ?V⇢(t)

Reynolds’ 
transport 
theorem

d
dt

Z

Vb(t)
�b dV =

dB

dt
=

Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
nb · adS

0 =
Z

V(t)

⇥�

⇥t
dV +

Z

S(t)
nt · adS

0 =
⇥�

⇥t
+� · nt

0 =
⇥�

⇥t
+� · �v

0 =
⇥�

⇥t
+� · �u +

nX

i=1

� · jui You will explore various forms of the 
continuity equation in your homework...

Lagrangian form of the 
continuity equation.

 ⇒

Helps us move between 
Lagrangian and Eulerian...

B = m, b =
B

m
= 1
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Lagrangian & Eulerian - A Very Simple Example

What is the density in a piston-cylinder system as a function of time?

Eulerian: Lagrangian:
d
dt

Z

V⇢(t)
� dV =

dm

dt
= 0

1. Initial conditions: bottom of cylinder air at STP
2. Adiabatic system
3. Constant composition in space and time.
4. Spatially uniform density
5. h(t) = h0 + L/2 [ 1+cos(Ωt) ] - this is a simplified description 

-see http://en.wikipedia.org/wiki/Piston_motion_equations
6. Closed system (no valves)

Assumptions:

key 
step!

What level of description do we have of the velocity field 
in the cylinder?  Is it adequate to answer the question?

m = ⇥V = ⇥�R2h

dm

dt
=

d
dt

�
⇥�R2h

�
= 0

⇤⇥

⇤t
= �⇥ · nt = �⇥ · (⇥v) = �⇥⇥ · v

Z

V(t)

⇤⇥

⇤t
dV = �⇥

Z

V(t)
⇥ · v dV = �⇥

Z

S(t)
v · adS

V(t)
⇤⇥

⇤t
= ⇥�R2v

⇤⇥

⇤t
= ⇥

v(t)
h(t)

Homework: show that these are equivalent.

• Cylinder stroke: 30 cm

• Head height: h0 = 2 mm

10Wednesday, January 11, 12

http://en.wikipedia.org/wiki/Piston_motion_equations
http://en.wikipedia.org/wiki/Piston_motion_equations


Eulerian forms:

Species Mass

b = �i

B = mi = m�i

In a closed system, 
the mass of species i 
changes only due to 
chemical reaction:

dS
a

V(t
o

)

V
b

(t
o

��t)

V
b

(t
o

)

si - mass reaction rate per unit volume.

NOTE: this is for a closed system on species i.  
Is this the same system as for species j?

d
dt

Z

Vb(t)
�b dV =

dB

dt
=

Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
nb · adS

Z

V(t)
si dV =

Z

V(t)

⇤�⇥i

⇤t
dV +

Z

S(t)
ni · adS

⇤�⇥i

⇤t
= �⇥ · ni + si

Lagrangian form of species conservation.d

dt

Z

V�i (t)
�⇥i dV =

dmi

dt
=

Z

V�i (t)
si dV

• Note that fluxes appear in the Eulerian form.

• If the total flux is not readily available, we 
decompose it into convective and diffusive 
components, ni=ρiv+ji...

• The total continuity equation is readily 
obtained by summing the species equations.
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Species Balance Example: Stefan Tube

�cxi

�t
=

�ci

�t
= �⇤ · Ni

⌅�⇥i

⌅t
=

⌅�i

⌅t
= �⇤ · ni,

At steady state (1D),

Species balance equations (no reaction):

T&K Example 2.1.1

Air

Liquid
Mixture

z = �

z = 0

Convection-
diffusion balance...

ni = ↵i

Ni = �i

Z

V(t)
si dV =

Z

V(t)

⇤�⇥i

⇤t
dV +

Z

S(t)
ni · adS

⇤�⇥i

⇤t
= �⇥ · ni + si

V - the volume we choose 
for the integral balance.

Given: composition 
at z=0, z=l.
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Momentum - Pure Fluid

Newton’s second 
law of motion:

Lagrangian integral form of 
the momentum equations

Eulerian forms

dS
a

V(t
o

)

V
b

(t
o

��t)

V
b

(t
o

)

B = mv

b =
mv

m
= v

dB

dt
=

Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
�bub · a dS

m
dv

dt
= �

Z

S(t)
(⌧ · a+ pa) dS+

Z

V(t)
�f dV

Recall, for a pure fluid, there exists 
a single unique system velocity, v.

⇥�v

⇥t
= �⇥ · �vv �⇥ · ⌧ �⇥p+ �f

Z

V(t)

⇥�v

⇥t
dV +

Z

S(t)
�vv · a dS = �

Z

S(t)
(⌧ · a+ pa) dS+

Z

V(t)
�f dV

dB

dt
= m

dv

dt
=

X
F

Extenal
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Momentum Example: Steady Stirred Tank

Choose the liquid-tank & liquid-air interface as the 
volume over which we will perform the balance.

Z

V(t)

⇥�v

⇥t
dV +

Z

S(t)
�vv · a dS = �

Z

S(t)
(⌧ · a+ pa) dS+

Z

V(t)
�f dV

Z

S(t)
⇢vv · a dS

Z

S(t)
⌧ · a+ pa dS

Z

V(t)
⇢f dV

at steady state this term must be zero

only nonzero if we have flow across the surface 
(therefore zero for this situation)

Stresses at the surfaces are nonzero if there are nonzero 
velocity gradients.  What balances this force?  What happens if it 
is not balanced?

f=g - acceleration due to gravity.  How is this force balanced?

Z

V(t)

⇥�v

⇥t
dV
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Momentum - Multicomponent Mixtures

What velocity defines the momentum?

species specific momentum
(momentum per unit 
volume for species i)

nX

i=1

⇢iui = ⇢
nX

i=1

!iui = ⇢v

total specific momentum
(total momentum per 

unit volume)

What velocity advects the momentum?

nX

i=1

miui = m
nX

i=1

�iui = mv

species momentum
(momentum for species i)

total 
momentum

B = mv, b =
B

m
= v

Velocity is an intensive quantity, 
momentum per unit mass

It seems reasonable that a mass-averaged velocity would 
advect the mass-averaged velocity (specific momentum)...
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Differences from pure fluid momentum equation:
• body force term includes forces acting on each species
• velocity is a mass-averaged velocity!

Eulerian forms

d
dt

Z

Vb(t)
�b dV

| {z }
dB
dt

=
Z

V(t)

⇥�b

⇥t
dV +

Z

S(t)
�bub · adS

Newton’s second 
law of motion:

dB

dt
= m

dv

dt
=

X
F

Extenal

Body forces may 
act differently on 
different species:

F =
n�

i=1

�⇥ifi fi : acceleration 
on species i.

Lagrangian integral form of 
the momentum equation

Z

V(t)

⇤�v

⇤t
dV = �

Z

S(t)
�vv · a dS�

Z

S(t)
(⌧ · a+ pa) dS+

Z

V(t)

nsX

i=1

�⇥ifi dV

⇤�v

⇤t
= �⇥ · (�vv)�⇥ · ⌧ �⇥p+

nsX

i=1

�⇥ifi

Reynolds’ 
transport 
theorem

m
dv

dt
= �

Z

S�v(t)
(⌧ · a+ pa) dS+

Z

V�v(t)

nsX

i=1

�⇥ifi dV
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Total Internal Energy
B = E0 = me0 b = e0

First law of 
thermodynamics:

q - total diffusive heat flux (more later)
τ - stress tensor
fi - body force on species i.

Rate of 
viscous work 
done on the 

system

Rate of 
pressure work 
done on the 

system

Rate of body 
force work done 
on the system

Total heat flux 
out of the system

Lagrangian 
Form:

dE0

dt
=

dQ

dt
+

dW

dt

What would q include?

dW

dt
=???

What is the rate of work done 
on the closed system?

specific 
kinetic 
energy

specific 
internal 
energy

E0 - total internal energy (kinetic and internal energy)

dQ

dt
= �

Z

Se0 (t)
q · adS

e0 =
1

2
v · v + e

=
1

2
v · v � p

�
+ h

dE0

dt
=

Z

Ve0 (t)
�e0 dV = �

Z

Se0 (t)
q · a dS�

Z

Se0 (t)
(⌧ · v + pv) · a dS+

Z

Ve0 (t)

nsX

i=1

fi · ni dV

Note: here we have assumed 
that the mass averaged velocity 

is the appropriate one...

17Wednesday, January 11, 12



Total Internal Energy (cont.)

time rate of 
change of total 
internal energy 
in the volume

advective transport of 
total internal energy 
across the surfaces

Energy 
dissipation from 

viscous and 
pressure work 
on the system

work done by 
body forces due 

to both advection 
and diffusion

Eulerian Integral Form:

Lagrangian Form:

Reynolds’ Transport Theorem:

Eulerian Differential form:

Z

Vb(t)
⇢b dV =

Z

V(t)

@⇢b

@t
dV +

Z

S(t)
⇢bub · adS

⇥�e0
⇥t

+⇥ · �e0v = �⇥ · q�⇥ · (⌧ · v + pv) +
nX

i=1

fi · ni

Energy 
transfer 

from heat 
flux

Z

V(t)

⇥�e0
⇥t

dV +

Z

S(t)
�e0v · a dS = �

Z

S(t)
(q+ ⌧ · v + pv) · a dS+

Z

V(t)

nsX

i=1

fi · ni dV

dE0

dt
=

Z

Ve0 (t)
�e0 dV = �

Z

Se0 (t)
q · a dS�

Z

Se0 (t)
(⌧ · v + pv) · a dS+

Z

Ve0 (t)

nsX

i=1

fi · ni dV
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Recap of Governing Equations
Continuity:

Momentum:

Species mass:

Total Internal 
Energy:

This set of equations is the 
most frequently used set for 

many engineering applications.

Thermodynamics: solve for 
T from ωi, p and e0.

h =
nX

i=1

hi�i

hi = h�i +
Z T

T�
i

cp,i(T )dT

Diffusive fluxes - require constitutive relationships.

Pressure - requires equation of state.

Chemical source terms - requires a chemical mechanism relating T, p, ωi to si.

Eu
le

ri
an

 G
ov

er
ni

ng
 E

qu
at

io
ns

 in
 

Te
rm

s 
of

 a
 M

as
s-

A
ve

ra
ge

d 
Ve

lo
ci

ty

⇥�

⇥t
= �⇥ · �v

⇥�i
⇥t

= �⇥ · �iv �⇥ · ji + si

⇥�v

⇥t
= �⇥ · (�vv)�⇥ · ⌧ �⇥p+

nsX

i=1

�ifi

⇥�e0
⇥t

= �⇥ · �e0v �⇥ · q�⇥ · (⌧ · v + pv) +
nX

i=1

fi · ni
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The “Heat Flux” - a preview

Contributions:

• Fourier term (due to ∇T )

• Diffusing species carry energy: ∑hiji 
• Species gradients (in absence of 

species fluxes) can move energy!
‣ “Dufour Effect” - typically ignored

‣ugly.

• Radiative heat flux: σεT4 (or more 
complicated)

More soon...

q = qFourier + qSpecies + qDufour

qFourier = ��⇥T

⇥�e0

⇥t
= �⇥ · �e0v �⇥ · q�⇥ · (⌧ · v + pv) +

nX

i=1

fi · ni

qSpecies =
nX

i=1

hi�⇥i(ui � v),

=
nX

i=1

hiji
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Mass vs. Molar Equations
Equations can be written in molar form as well.
• can be derived using Reynolds’ Transport Theorem.

• Sometimes it is more convenient.
‣ ideal gas at constant T, p, no reaction

Typically when solving the momentum equations, the mass 
form is used.
• sometimes the molar form of the species equations are used when 

momentum is not being solved

⇥�

⇥t
= �⇥ · �v

⇥ct

⇥t
= �⇥ · ctu +

nX

i=1

si

Mi

mass form

molar form
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“Weak” Forms of the Governing Equations

The “weak form” of a governing equation is obtained by subtracting the continuity equation.

⇥�

⇥t
+� · �v = 0

⇥�

⇥t
+ v ·�� + �� · v = 0

D�

Dt
+ �� · v = 0

D
Dt
� �

�t
+ v ·⇥

Example: species

�
D⇥i

Dt
= �⇥ · ji + si

“Strong” form or 
“conservative” form

“Weak” form or 
“nonconservative” form

⇤�⇥i

⇤t
+⇥ · �⇥iv = �⇥ · ji + si

�
⇤⇥i

⇤t
+ ⇥i

⇤�

⇤t
+ �v ·⇥⇥i + ⇥i⇥ · �v =

⇥i

✓
⇤�

⇤t
+⇥ · �v

◆
+ �

✓
⇤⇥i

⇤t
+ v ·⇥⇥i

◆
=

substitute 
continuity
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Strong & Weak Forms - Summary

Strong Form Weak Form

⇥�

⇥t
+� · �v = 0

D�

Dt
= ��⇥ · v

⇤�⇥i

⇤t
+⇥ · �⇥iv = �⇥ · ji + si �

D⇥i

Dt
= �⇥ · ji + si

�
Dv
Dt

= �⇥ · ⌧ �⇥p + �
nX

i=1

⇥ifi

⇥�e0

⇥t
+⇥ · (�e0v) =�⇥ · q�⇥ · (⌧ · v)

�⇥ · (pv) +
nX

i=1

fi · ni

�
De0

Dt
=�⇥ · q�⇥ · (⌧ · v)

�⇥ · (pv) +
nX

i=1

fi · ni

Continuity

Species

Momentum

Total internal 
energy

D
Dt
� �

�t
+ v ·⇥

⇤�v

⇤t
+⇥ · (�vv) = �⇥ · ⌧ �⇥p+ �

nX

i=1

⇥ifi
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Forms of the Energy Equation
Total internal energy equation:

Internal energy equation: 

⇥�e0

⇥t
= �⇥ · �e0v �⇥ · q�⇥ · (⌧ · v + pv) +

nX

i=1

fi · ni

Enthalpy equation: 

⇤�h

⇤t
=

Dp

Dt
�⇥ · (�hv)� ⇥ : ⇥v �⇥ · q +

nX

i=1

fi · ji

e0 = e + k = e + 1
2v · v subtract kinetic energy equation 

from total internal energy equation

⇤�e

⇤t
+⇥ · (�ev) = �⇥ : ⇥v � p⇥ · v �⇥ · q +

nX

i=1

fi · ji

h = e +
p

�
=) ⇥�h

⇥t
=

⇥�e

⇥t
+

⇥p

⇥t
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Temperature Equation (1/2)

Coefficient of thermal 
expansion

(from equation of state)

dh =
nX

i=1

✓
⇥h

⇥�i

◆

T,p

d�i +
✓

⇥h

⇥T

◆

�i,p

dT +
✓

⇥h

⇥p

◆

T,�i

dp

Species enthalpies Heat capacity (function of T, ω)

dh =
nX

i=1

hid⇥i + cpdT + V̂ (1� �T ) dp

hi ⌘
✓

⇥h

⇥�i

◆

T,p

cp =
✓

⇥h

⇥T

◆

�i,p

=
nX

i=1

�icp,i

✓
⇥h

⇥p

◆

T,�i

= V̂ � T

 
⇥V̂

⇥T

!

p,�i

= V̂ (1� �T )

Thermodynamics: choose T, p, ωi as independent variables. 
Then the enthalpy differential is:

� ⌘ 1
V̂

 
⇥V̂

⇥T

!

p,�
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dh =
nX

i=1

hid⇥i + cpdT + V̂ (1� �T ) dp

Solve for dT and multiply by ρ:

⇥cpdT = ⇥dh� (1� �T ) dp�
nX

i=1

hi⇥d⇤i

Substitute and simplify...

Notes:
• For an ideal gas, α=1/T.
• If body forces act equally on species, then ∑fi⋅ji = 0.
• q includes the term ∑hiji.  The net term is thus ∑ji⋅∇hi.

⇥cp
DT

Dt
= �T

Dp

Dt
� ⇤ : ⇥v �⇥ · q +

nX

i=1

hi (⇥ · ji � si) +
nX

i=1

fi · ji

Temperature Equation (2/2)

�
Dh

Dt
=

Dp

Dt
� ⇥ : ⇥v �⇥ · q +

nX

i=1

fi · ji �
D⇥i

Dt
= �⇥ · ji + si
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1e−2 1 1e2 1e4
10−10

10−5

100

105

a (s−1)

dT
/d

t (
K/

s)

 

 

Air 300K
Steam 600K
Hg 600 K

Example:  Viscous Heating
Is Couette flow isothermal?

v
x

= 0

vx = vH

x

y

⇥cp
DT

Dt
= �T

Dp

Dt
� ⇤ : ⇥v �⇥ · q +

nX

i=1

hi (⇥ · ji � si) +
nX

i=1

fi · ji

y = 0

y = �

v
y

= 0,
⇥v

x

⇥x
= 0

⇥v
x

⇥y
= �

⇤�v
x

⇤t
= �⇤�v

x

v
x

⇤x
� ⇤�v

x

v
y

⇤y
� ⇤⇥

xx

⇤x
� ⇤⇥

xy

⇤y
� ⇤p

⇤x
+ �g

x

⇤⇥
xy

⇤y
= 0 ) ⇥

xy

= constant = �µ
⇤v

x

⇤y
= �µ�

vx = �µ� (⇥� y) + vH

⇥c
p

⌅T

⌅t
= �T

⌅p

⌅t
� ⇤

xy

⌅v
x

⌅y

⇧T

⇧t
= � ⌅

xy

⇤c
p

⇧v
x

⇧y
,

=
µ�2

⇤c
p

,

=
⇥

c
p

�2

M
om

en
tu

m
 b

al
an

ce

A
re the assum

ptions valid?

assume steady 
pressure field

what happened 
to the convective 

terms?
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Example: Batch Reactors
Derive the equations describing a well-mixed batch reactor.

Assumptions:
• Well-mixed (no spatial gradients).
• Constant volume.
• Closed system.

How do we simplify and solve these equations?

Z

V(t)

⇤�

⇤t
dV = �

Z

S(t)
�v · a dS

Z

V(t)

⇤�⇥i

⇤t
dV = �

Z

S(t)
�⇥iv · a dS+

Z

V(t)
si dV

Z

V(t)

⇤�v

⇤t
dV = �

Z

S(t)
(�vv + ⌧ ) · a dS�

Z

S(t)
pa dS�

nX

i=1

Z

V(t)
�ifi dV

Z

V(t)

⇤�e0
⇤t

dV = �
Z

S(t)
(�e0v � q� ⌧ · v + pv) · a dS+

nX

i=1

Z

V(t)
fi · ni dV
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