Governing Equations for
Multicomponent Systems
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Qutline

¢ Preliminaries:

* Derivatives

* Reynolds’ transport theorem (relating Lagrangian and Eulerian)

* Divergence Theorem

¢ Governing equations

* total mass, species mass, momentum, energy

* weak forms of the governing equations

e Other forms of the energy equation

» the temperature equation

¢ Examples

e Couette flow - viscous heating

e Batch reactor
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Derivatives

5  Time-rate of change at a fixed position in space.

d Time-rate of change as we move through space with arbitrary
dt  velocity (not necessarily equal to the fluid velocity)

4d_0,&x g 0,0 o &I 0, .y
ot At ot dtoxr  dtoy  dtdz ot

D Time-rate of change as we move through space at the
Dt  fluid mass-averaged velocity.

D/Dt is known as the
D . “material derivative” or
_t = a +v-V “substantial derivative”
Example: T = sin(wt) +x + 5 dr a a

pic. — Yy * R COS(wt) + ul + 5u Can you have a
dt Y steady flow field
DT where d/dt is
—— = wcos(wt) +v.,. + Hv unsteady?
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Lagrangian vs. Eulerian

Let W be any field function that is continuous in space and time. -~

Vy (t) A Lagrangian volume that defines Vg (t, — At)
a closed system for ¥ \

Closed system: Vy (t)defined by uy
V(t) An Eulerian volume defined

arbitrarily in space and time.

May have flux through boundaries
since it is NOT a closed system!

For a continuous field Y(x,7) we relate the Lagrangian and Eulerian descriptions as

d )
— UdV = / _(9 dV + / Yuy -adS \tNhat . eactt‘
dt Va (1) V(t) Ot S(t) erm represent?

mﬁ‘wa falso known as the Leibniz formula
OFUTAH
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Intensive & Extensive Properties

B - extensive quantity
b - intensive quantity (B per unit mass)

pb - B per unit volume

Note: if we use moles rather than

B = / pb dV mass, we obtain the partial molar
v :

properties (also intensive)

Note: if p and b are continuous functions then so is pb.

Reynolds’ Transport d obdV = / (9/0[) v + /  adS
Vi (t) V(t) ot S(t)

Theorem with Y=pb: dt

J/

aB

dt 4
This equation will help us derive balance pbupr=ny
equations for mass, momentum, energy. Mass flux of b
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The Lagrangian Volume “Problem™

d dpb
— pbdV = / ope dV + / ng -adS Reynolds’ transport theorem
dt Jy, vy O 30

\

"

dB

t

o In a multicomponent system, we have
many velocities! That means that we have
different definitions of the Lagrangian

dX2
a2 volume for each property b!
= 4
n, = pbuy Jb = mass diffusive flux of b relative
= pbu® + j; to reference velocity u.

d Relates a closed Lagrangian

— / ,Ob dvV = — pb dV + / Jg - adS< system moving at u, to an open
Vi(t) At Jya ey Sa(t)

Lagrangian system moving at u<.

0pb
— ——dV + / ng - adS 5 i
/\/(t) Ot S(t) \ Relates a closed Lagrangian system

moving at u, to an Eulerian system.
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The Divergence 'heorem

Also called Gauss’ theorem, Ostrogradsky’s
theorem or the Gauss-Ostrogradsky theorem

For any vector field q, Can also be written for
scalar & tensor fields:
/S(t) q- adS = v V - QdVJ VQb dV = ¢a ds useful fo.r
V(t) S(¢) transforming

the momentum

This is very useful when moving o equations
from macroscopic (integral) balances V-rdV = / T-adsS (p & T)
V(1) S(1)

to differential balances.

Using the divergence theorem, we can rewrite
the Reynolds Transport Theorem as

d dB b
— pbdV = — = / aidV+/ n, - adS n, = pbuy,
dt Jy, ) dt v(t) Ot S(#) 0 | sa
9pb = pbu” + jy
B /\/(t) (W A nb) dv mass flux of b. )
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Deriving Transport Equations for Intensive Properties

|. Define B and b.

2. Determine dB/dt (change in B in a closed system) This typically comes from
some law like Newton’s law, thermodynamics laws, etc.

Using a closed system is the most convenient for deriving the equations, but
note that each B has a (potentially) different definition for the system.

d dB If you need to use an “open”
Lagrangian Form: d_ ,Ob dV = dt — +  Lagrangian system, see the notes on
Vi (t) the Lagrangian volume “Problem”.

3. Construct the governing equations in Lagrangian or Eulerian form.

d dB [ Opb

: . bdV = — = —— dV -adS
Eulerian Form: 1 Vb(t)p 17 /\/(t) o +/S(t) n,-a

from step 2
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Total Mass (Continuity)

_ s
4 \\
“ \
.
7 \
. \
— 4 \
— ’ \
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- _ \
Z
’
/
§
]

Mass: B=m, b=

Total mass is constant d dm

= 0 dV = — 0 Lagrangian form of the
in a closed system dt J, ) dt continuity equation.
p /

What defines V,(t)?

Reynolds’ d AR 9pb
qanspore 3 [ pbav="= [ TRV [ myoads Heumor e
theorem 12365 V(¢) S(¢t) grang

Eulerian forms:

0 = / @ dV + / n; - adS
v(t) Ot (1)

dp

0 = 241 v.n
ot ‘
dp

0 = ——+V-pv
ot P
8’0 8 You will ex i

. F . LU plore various forms of the
U 0 ot +V-pu+t Zl Vi continuity equation in your homework...
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Lagrangian & Eulerian - A Very Simple Example

What is the density in a piston-cylinder system as a function of time?

Assumptions:

* Cylinder stroke: 30 cm

e Head height: o= 2 mm Initial conditions: bottom of cylinder air at STP

|

2. Adiabatic system

3. Constant composition in space and time.

4. Spatially uniform density

5. h(t) = ho + L/2 [ 1+cos(€2¢) ] - this is a simplified description
-see http://en.wikipedia.org/wiki/Piston_motion_equations

6. Closed system (no valves)

Eulerian: Lagrangian:
% = —V:n=-V-:(pv)=—pV-v dg Vp(t)PdV—(Zn—O
Slt(:;!ﬁ{ V(t)g'ZdV = —p V(t)V.Vde/S(t)v-adS m = pV = prR2h
V(t)% = prR%v . show that these Jre equivalent d—T = di (p?TRQh) =0

What level of description do we have of the velocity field

U
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Species Mass

N d dB 8pb
C Wa(te— AY) E pbdV = — = /V — dV + /S(t) ng - adS

B =m,; = mw; dt Jy, @) di 1y Ot

b:wi

In a closed system,
the mass of Species l i / OW; dV = dmz — / S dV Lagrangian form of species conservation.
changes only due to dt W (t) dt Ve, (1) §i - mass reaction rate per unit volume.

chemical reaction:

4

NOTE: this is for a closed system on species i.
Is this the same system as for species j?

Eulerian forms: * Note that fluxes appear in the Eulerian form.
c’?pw- * If the total flux is not readily available, we
/ s; dV = / = dVv —+ / n; -adS decompose it into convective and diffusive
V(t) V(t) ot S(t) components, N;=p;V+ji...
0 pw; * The total continuity equation is readily
5 = —V-n;,+s; obtained by summing the species equations.
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T&K Example 2.1.1

Species Balance Example: Stefan Tube

Given: composition
at z=0, z=I.
—_—— Rl — é

Air

/ s;dV = / ap"""'<1v+/ n, - adS
V(t) V(t) ot S(¢)

0 PW;
—0 ot

Liquid
Mixture

N

= —V-n;+s;

Species balance equations (no reaction):
Opwi . dpi

= = —V - n,,
ot ot v
Ocx;  Oc;
i i v Nz
ot ot
At steady state (I1D),
n, — o4 Convection-
N, = 57/ diffusion balance...
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Momentum - Pure Fluid

B=my ( — = / “LZav + / pbu,, - adS
| ‘ - Jvw Ot 30

Recall, for a pure fluid, there exists
a single unique system velocity, v.

Newton’s second dB dv -
law of motion: dt m dt Z Extenal

dv . / (7_ . a —I-pa) ds + / of AV Lagrangian integral form of
S(t)

m-— — .
dt V(t) the momentum equations

/ aﬂdV—l—/ pvv-adS:—/ (T-a—|—pa)d5—|—/ pt dV
vi) Ot S(t) S(t) V(2)
opv

o= —V-pvw -V -7 —Vp+ pf Eulerian forms
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Momentum Example: Steady Stirred Tank

dpv
v<t> ot

UNIVERSITY
OF UTAH

dV—l—/ pvv-adS:—/ (T-a—l—pa)dS—I—/ pf dV
S(t) S(t)

V(t)

Choose the liquid-tank & liquid-air interface as the
volume over which we will perform the balance.

at steady state this term must be zero

only nonzero if we have flow across the surface
(therefore zero for this situation)

Stresses at the surfaces are nonzero if there are nonzero
velocity gradients. What balances this force! What happens if it
is not balanced?

f=g - acceleration due to gravity. How is this force balanced!?

Wednesday, January 11, 12
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Momentum - Multicomponent Mixtures

n n n mn
DXTRG > = mY e -
i=1 T i=1 i=1

species specific momentum total specific momentum .
: species momentum total
(momentum per unit (total momentum per .
. : (momentum for species i) momentum
volume for species i) unit volume)
B b B Velocity is an intensive quantity,
— my, o m, =V momentum per unit mass

What velocity advects the momentum!?

It seems reasonable that a mass-averaged velocity would
advect the mass-averaged velocity (specific momentum)...
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, Body forces may ° N .
Newton’s second dB _ md_V _ Z FEXtenal act differently on F — priffi f; .acceleratlc.an

law of motion: dt dt different species: Of SpeCIes &

dv / L . 't c
m— — — (7- .a -+ pa) ds e / szf dV agrangian integra orm o
dt SPU (t) Z

the momentum equation
VP'U (t) =1 q

v d 0pb
Reynolds™ = pbdV = / TP AV + / pbuy, - adS
transport dt Vi (1) V(t) (7 S(t)
theorem  \ ~~
dB
dt
dpv
/ dvV = —/ pvv -adS — (7' a+pa dS+/ pr%f %
V(t) ot S(t) 5(t) V(t) =1
dpv :
— = —V - -(pvv) =V -7 —-Vp+ Z pw;; Eulerian forms

1=1

Differences from pure fluid momentum equation:

* body force term includes forces acting on each species

* velocity is a mass-averaged velocity!
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UNIVERSITY
OF UTAH

Wednesday, January 11, 12



Total Internal Energy

Ey - total internal energy (kinetic and internal energy)

B:Eozmeg b:€0

1
eg = §V -V +e First law of d Lo _ d@ + dW
| thermodynamics: d¢ dt dt
2 P dQ ,
specific specific ., — q-adS What would q include?
kinetic internal dt Sey (1)
energy energy
dW oo What is the rate of work done
dr on the closed system!?
Rate of Rate of
viscous work pressure work Rate of body
Total heat flux done on the done on the force work done
out of the system system system on the system
Lagrangian dEg s
e = pegdV = — (@ adS — (™9 +pv) -adS + > f;-n;dVv
orm. Veo (t) Seq (1) Seq (1) Veo (8)| =1
q - total diffusive heat flux (more later) Note: here we have assumed

that the mass averaged velocity

T - stress tensor
is the appropriate one...

f; - body force on species i.

U
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Total Internal Energy (cont.)

Lagrangian Form:

dEy

_:/ peOdV:—/ q-adS — (T-V+pv)-ad5—|—/ Zf n; dV
dt Ve (1) Seq (1) Seq (1) Veo (1) j=1

Reynolds’ Transport Theorem: / pbdV = /
Vi (t) V

dpb

dV +/ pbuy, - adS
0 Ot (1)

Eulerian Integral Form:

0 “
/ p60dV+/ pegv.adS:—/ (q+7-v+pv)-ad5+/ S‘f n; dV
vie) Ot S(t) S(t) V(t)

1=1

time rate of
change of total
internal energy
in the volume

advective transport of
total internal energy
across the surfaces

Eulerian Differential form:

dpeg
ot

Energy

Energy work done by

transfer dissipation from body forces due
from heat viscous and to bgth advection
pressure work e -
flux and diffusion

on the system

‘|‘V°,060V=—V'q—V'(T°V—|-pV)—|—Zfi-niJ
i=1
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Recap of Governing Equations

dp This set of equations is the
B —V - pv most frequently used set for
5 t many engineering applications.
Pi

ot

Continuity:

Species mass:

. O0pv s
Momentum: P . E £
© u W — —V°(pVV)—V°T—V£—|_i:1 pzfz

Total Internal a,060
Energy: Ot

—V-peov—v-q—v-(T-V—I—pV)—I—ZfZ--nZ-
— - - i=1

Eulerian Governing Equations in
Terms of a Mass-Averaged Velocity

y

Chemical source terms - requires a chemical mechanism relating T, p, w; to s..
Diffusive fluxes - require constitutive relationships.

Pressure - requires equation of state.

Thermodynamics: solve for A Zhiwi
T from w;, p and eo. —
T
U he = Ko+ / ¢, J(T)dT

OF UTAH 7
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The "Heat Flux” - a preview

8,060
ot

:—V-pegv—v-q—v-(T-V—I—pv)—l—Zfi-ni

\ i=1

& . . .
¢ Contributions: A = QFourier + 9Species + ADufour

* Fourier term (due to VT)

e Diffusing species carry energy: > hjji QFourier = —AVI

0 Spec.ies gradients (in absence of Uspecies = Z hapwi(w; — V),
species fluxes) can move energy! i—1
» “Dufour Effect” - typically ignored .
= > hiji
4 Ugl)’ =1

* Radiative heat flux: eT* (or more
complicated)

¢ More soon...

U
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Mass vs. Molar Equations

¢ Equations can be written in molar form as well.

* can be derived using Reynolds’ Transport Theorem.

e Sometimes it is more convenient.

» ideal gas at constant 7, p, no reaction

o,

8_IZ = —V:pv mass form
o V- cua+ z”: i molar form
- — S - C —_

ot ' £ M,

¢ Typically when solving the momentum equations, the mass
form is used.

* sometimes the molar form of the species equations are used when
momentum is not being solved

U
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“Weak” Forms of the Governing Equations

The “weak form” of a governing equation is obtained by subtracting the continuity equation.

dp

T AV-ov=0

8t+ PV J

@—I—V-V +pV-v=0 2:34_ -V
ot pp B Dt ot
Dp

— v =0

Dt—l—va J

Example: species

Opw; : “Strong” form or
ot TVopwiv = =Vedit SiJ “conservative” form
Ow; 0
,05;5 —I—wiﬁ—';)—l—pv-Vwi—l—in-pv =
5’,0 6’wi
’l: _— v . _— . v ’I, p—
w<8t+ pv)+p<8t + v w)

" continuity P ¢ ‘nonconservative” form

UNIVERSITY
of UTAH
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Strong & Weak Forms - Summary

Strong Form Weak Form
. Op B Dp
Continuity 5 + V. pv = Df — pV - v
: Dwi .
Species agctuz + V- pw;v=-V"-j+s; 'OD—t = -V -J; +8;
M 8";V%—V-(vv)——V-T—V + zn:w-f- B——V- — Vp + i 37
omentum It % = p Pi:1 i | Py = T p Pi:1 Wil
: dpeg Deg
Total internal +V-(pegv)=—V-q—V-(1-V) Pl V.q-V - (TV)
energy ot i Dt
-V (pv)+Zfz n; —V-(pv)—l—Zfz n,
=1 i=1
D 0
= Fv -V

U Dt Ot
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Forms of the Energy Equation

Total internal energy equation:
dpeg
ot

:—V-peov—v-q—v-(T-V+pv)+2fi-ni
i=1

subtract kinetic energy equation

. . . 1
Internal energy equation: € =€+ k=e+ 2V "V from total internal energy equation

Ope & ,
E—I—V°(p6V):—TZVV—pV°V—V'q—|-;fi°Ji

: Oph  Ope Op
nthalpy equation: h=¢c¢+ S = a 5+

dph  Dp . - :
W—D—t—V-(phv)—T.VV—V-q—i—;fz-Jz

U
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Temperature Equation (1/2)

Thermodynamics: choose T, p, w; as independent variables.

Then the enthalpy differential is:

Oh Oh
0 (), e () (),

Oh oh -
hi = = | 3~ = iCp,i
(8(")’5 ) T.p Cp <0T>wi,p ;w CP?

Species enthalpies Heat capacity (function of 7, w)

oh . oV
— T ==
<8p>Tw v <8T>
e P,wWi

V(1—aT) «@

1 8‘7 Coefficient of thermal
? A expansion

oT b (from equation of state)

dh =) hidw; + ¢,dT + V (1 — o) dp

1=1

UNIVERSITY
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Temperature Equation (2/2)

dh =) hidw; + ¢,dT 4+ V (1 — o) dp

1=1

Solve for dT and multiply by p: n
pc,dT = pdh — (1 — aT)dp — Z h; pdw;

— - —

Dh  Dp —~. . Dw; :
pD—t—D—t—T.VV—V-q—I—;fz Ji th = -V -j; +s;
Substitute and simplify...
DT Dp - , = ,
PCo T :OzTD—t—7':VV—V%]—I—Zhi(v'Ji—Si)—FZfi-Ji
1=1 1=1 4
Notes:

* For an ideal gas, a=1/T.
* If body forces act equally on species, then > f;-j;= 0.

U * ( includes the term ) /;j;.. The net term is thus ) j;- V..
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Example: Viscous Heating

|s Couette flow isothermal? o OV OV
U ’Uy p— 07 p— O p— "}/
5 0x oy
y="~ Ve =VH S8 Opu, _ _f)pvxvx B OpvLvy B OT B Oy, 3 @ N
AY = ot ox 0y Ox 0y or I
0 [/ 0 g oT ov
Yy = >x Uz = Q Y =0 =7, =constant = —p—— = —uy
E Oy ’ dy
2 vy =—py(l—y)+on
DT Dp & , .
PCo T :ozTD—t—T:VV—V-q—FZhZ-(V-Ji—SZ-)—FZfi-JZ-
i=1 i i=1
what happene\ 10 ; >
to the convective oT Op O, AT 300K =
o - _ -z o
terms? PCp ot ol ot Txy Oy — Steam 600K| =i
assume steady 10° b —Hg600K | . ~Z .. ] ©
pressure field Q 5 3 7
5’_ Ty OV 2 %
ot pQCp dy = T~ N g
_ o
PCp <
2 107 P S FTTTIatES =
= 7 1e-2 i fe2 Tes
U Cp

y(s™)

UNIVERSITY
of UTAH

Wednesday, January 11, 12



Example: Batch Reactors

Derive the equations describing a well-mixed batch reactor.

/

Assumptions:

* Well-mixed (no spatial gradients).
* Constant volume.
* Closed system.

/ Op dV — / pv - adS
v(t) Ot (1)

/ 8,0&)2 dV = -— / pW;V - adS + / s; dV

vie) Ot S(¢) V(t)

/ %dv = —/ (pVV—l—’T)'adS— padS—Z/ pzfzdv
v(t) Ot (1) (1) —~ Jv)

[ 500 [ fnas e S [
vty Ot (1) —~ Jv)

How do we simplify and solve these equations?
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