Flux Transformation Matrices

James C. Sutherland

Consider the $n-1$ dimensional transformations:

$$
\begin{align*}
(\mathbf{j}) & =\left[B^{o u}\right]\left(\mathbf{j}^{u}\right), \tag{1}\\
\left(\mathbf{j}^{u}\right) & =\left[B^{u o}\right](\mathbf{j}), \tag{2}
\end{align*}
$$

where $\left[B^{u o}\right]=\left[B^{o u}\right]^{-1}$. In class, we derived an expression for $\left[B^{o u}\right]$. Here we will derive the expression for [$B^{u o}$].

Let's look at the expression for the mass diffusion flux relative to a molar-averaged velocity:

$$
\begin{align*}
\mathbf{j}_{i}^{u} & =\rho_{i}\left(\mathbf{u}_{i}-\mathbf{u}\right) \\
& =\rho_{i}\left(\mathbf{u}_{i}-\mathbf{v}\right)+\rho_{i}(\mathbf{v}-\mathbf{u}) \\
& =\mathbf{j}_{i}+\rho_{i}(\mathbf{v}-\mathbf{u}) \tag{3}
\end{align*}
$$

Since our goal is to express \mathbf{j}_{i} in terms of \mathbf{j}_{j}^{u}, we have rearragned the expression for \mathbf{j}_{i}^{u} in terms of \mathbf{j}_{i} and another term: $\rho_{i}(\mathbf{v}-\mathbf{u})$. Now let's see if we can use the expression for \mathbf{j}_{i} to eliminate the $(\mathbf{u}-\mathbf{v})$ term from (3). Recall

$$
\begin{equation*}
\mathbf{j}_{i}=\rho_{i}\left(\mathbf{u}_{i}-\mathbf{v}\right) \tag{4}
\end{equation*}
$$

This isn't useful to us since it has a \mathbf{u}_{i} in it. Note, however, that if we sum this, we obtain $\sum_{i=1}^{n} \mathbf{j}_{i}=0$. This is also not useful. Recall we need a term like $\rho_{i}(\mathbf{u}-\mathbf{v})$. Recall that $\mathbf{u}=\sum_{i=1}^{n} x_{i} \mathbf{u}_{i}$. Look closely at (4). If we multiply by x_{i} / ω_{i} then we have

$$
\frac{x_{i}}{\omega_{i}} \mathbf{j}_{i}=\rho x_{i}\left(\mathbf{u}_{i}-\mathbf{v}\right)
$$

Now if we sum this, we should get a \mathbf{u} from the $x_{i} \mathbf{u}_{i}$ term:

$$
\begin{align*}
\sum_{i=1}^{n} \frac{x_{i}}{\omega_{i}} \mathbf{j}_{i} & =\rho \sum_{i=1}^{n} x_{i} \mathbf{u}_{i}-\rho \mathbf{v} \\
& =\rho(\mathbf{u}-\mathbf{v}) \\
\frac{1}{\rho} \sum_{i=1}^{n} \frac{x_{i}}{\omega_{i}} \mathbf{j}_{i} & =\mathbf{u}-\mathbf{v} \tag{5}
\end{align*}
$$

Great! Now we are ready to return to equation (3). Substituting (5) into (3) gives

$$
\begin{aligned}
\mathbf{j}_{i}^{u} & =\mathbf{j}_{i}-\frac{\rho_{i}}{\rho} \sum_{j=1}^{n} \frac{x_{j}}{\omega_{j}} \mathbf{j}_{j}, \\
& =\mathbf{j}_{i}-\omega_{i}\left(\sum_{j=1}^{n-1} \frac{x_{j}}{\omega_{j}} \mathbf{j}_{j}+\frac{x_{n}}{\omega_{n}} \mathbf{j}_{n}\right), \\
& =\mathbf{j}_{i}-\omega_{i}\left(\sum_{j=1}^{n-1} \frac{x_{j}}{\omega_{j}} \mathbf{j}_{j}-\frac{x_{n}}{\omega_{n}} \sum_{j=1}^{n-1} \mathbf{j}_{j}\right), \\
& =\mathbf{j}_{i}-\sum_{j=1}^{n-1} \omega_{i}\left(\frac{x_{j}}{\omega_{j}}-\frac{x_{n}}{\omega_{n}}\right) \mathbf{j}_{j}, \\
& =\sum_{j=1}^{n-1}\left(\delta_{i j}-\omega_{i}\left(\frac{x_{j}}{\omega_{j}}-\frac{x_{n}}{\omega_{n}}\right)\right) \mathbf{j}_{j}, \\
\left(\mathbf{j}^{u}\right) & =\left[B^{u o}\right](\mathbf{j}),
\end{aligned}
$$

with

$$
B_{i j}^{u o}=\delta_{i j}-\omega_{i}\left(\frac{x_{j}}{\omega_{j}}-\frac{x_{n}}{\omega_{n}}\right) .
$$

This is equation 1.2.25 in Taylor \& Krishna.

