
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Combustion modeling using principal
component analysis

James C. Sutherland a,*, Alessandro Parente b

a Department of Chemical Engineering, University of Utah, 50 S. Central Campus Drive,

3290 MEB, Salt Lake City, UT 84112-9203, USA
b Department of Chemical Engineering, University of Pisa, Pisa, Italy

Abstract

The thermochemical state of a single-phase reacting system containing ns species is ns + 1 dimensional.
However, it is widely recognized that low-dimensional manifolds exist in this space. The question then
arises as to the best way to approximate these manifolds. Common chemistry reduction approaches for
combustion simulation (such as laminar flamelet, equilibrium, and flame-sheet (Burke–Schuman) chemis-
try) specify a priori the manifold dimensionality and the parameters that form the basis for representing the
thermochemical state, which is then prescribed as a unique function of these parameters. If high-fidelity
data are available from experiment or direct numerical simulation (DNS), manifolds may be determined
via a principal component analysis (PCA), with the principal components (PCs) forming a new basis for
describing the thermochemical state. By considering a truncated set of PCs, one may approximate the ther-
mochemical state with rigorous error bounds, extract a parameterized representation of the thermochem-
ical state, and derive transport equations for the principal components. This paper outlines a methodology
for constructing a reduced model for the thermochemical state from high-fidelity data with particular focus
on the ability to parameterize source terms appearing in the transport equations for the principal compo-
nents. The modeling approach allows quantitative a priori control of the error in the state-space parame-
terization, and can be applied to both laminar and turbulent simulations in all combustion regimes.
� 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Direct numerical simulation (DNS) of practi-
cal combustion systems is impossible due to two
general complications:

1. Resolution requirements. DNS requires that all
length and time scales physically realizable by
the system of interest be fully resolved. The

separation of length scales in turbulent flow
implies that resolution requirements scale
roughly with the turbulent Reynolds number
as Re3 [1].

2. Number of equations to be solved. Detailed
combustion mechanisms for simple fuels such
as methane involve 53 species and 325 reac-
tions [2]. Hence, the direct solution of a react-
ing system involving only methane in air would
require solution of 57 strongly coupled PDEs
(52 species, continuity, three momentum, and
energy). For higher hydrocarbons, the number
of equations increases significantly.
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Models are commonly introduced to alleviate the
cost associated with both of these issues. Resolu-
tion requirements (issue 1 above) are commonly
addressed by filtering the governing equations
spatially and/or temporally to produce the LES
and RANS equations. This leads to turbulent clo-
sure problems with convective and source terms in
particular.

Models to reduce the number of equations to be
solved (issue 2 above) vary widely. In general, the
thermochemical state of a single-phase reacting sys-
tem with ns chemical species is uniquely determined
by ns + 1 parameters (e.g. T, p, and ns � 1 mass
fractions, Yi). However, it is widely recognized that
in turbulent combustion, lower dimensional mani-
folds exist in this high-dimensional space [3,4]. All
of the models which reduce the number of thermo-
chemical degrees of freedom rely, either directly or
indirectly, on the assumption of a low-dimensional
attractive manifold to which the thermochemical
dynamics quickly relax.

Among the most common approaches to
reducing the number of thermochemical degrees
of freedom are mechanism reduction and state-
space parameterization. Mechanism reduction
leads to a reduced set of species equations, typi-
cally by analysis of the reaction rates [5–9]. Re-
parameterization of the thermochemical state
space by a small number of parameters is perhaps
the most common combustion modeling
approach. The most common choice of a parame-
ter for nonpremixed combustion is the mixture
fraction (f), which is a particularly convenient
choice since if all species diffusivities are equal, f
is a conserved scalar [10,11] and no source terms
require closure. However, properties such as den-
sity, viscosity, etc. must still be calculated from f.

This paper focuses on the second of these
approaches, re-parameterizing the thermochemi-
cal state by a small number of parameters based
on the existence of a low-dimensional manifold.
Most successful attempts at exploiting these man-
ifolds have been to prescribe a priori the parame-
ters that characterize the manifold [4,12–14].
However, such an approach restricts the subspace
that the thermochemistry may access without pro-
viding any quantitative error analysis a priori.
Indeed, as mixing and reaction timescales increas-
ingly overlap, the dimensionality of a manifold
increases, as does the error associated with a
parameterization of fixed dimensionality [4,15].

Principal component analysis (PCA) offers the
potential to automate the selection of an optimal
basis for representing the manifolds which exist
in turbulent combustion. The central idea of
PCA is to reduce the dimensionality of a data
set consisting of a large number of correlated vari-
ables while retaining most of the variation present
in the original data. The dimension reduction is
achieved by recasting the data into an ng-dimen-
sional space identified by the principal compo-

nents (PCs). In many cases (particularly those
where manifolds exist), the number of dimensions,
ng, required to accurately approximate the origi-
nal data are much smaller than the original
dimension of the data.

PCA provides an optimal representation of the
system based on ng � ns þ 1 ‘‘optimal” variables,
g, which are linear combination of the ns + 1
primitive variables T, p and Yi. PCA provides a
linear mapping from the original variables
(T,p,Yi) to a set of PCs, g. Using this mapping,
transport equations with associated initial and
boundary conditions may be derived for the
PCs, as discussed in Section 2.1.1.

The primary advantage of the PCA modeling
approach presented herein is that it provides a rig-
orous mathematical formalism to select parameters
which optimally represent the thermochemical
state of the system. Thus, models may be created
which satisfy a given error threshold on any ther-
mochemical variable (e.g. q, l, T, k, Yi, etc.). How-
ever, for PCA to be effectively exploited as a
modeling technique, two conditions must hold.
First the thermochemical variables must be param-
eterized within acceptable error bounds. Second,
the source terms for the PCs must be parameterized
within acceptable error bounds.

2. Principal component analysis

2.1. PCA formulation

Consider m observations of n variables
arranged in an n � m matrix X whose columns
represent individual observations and rows repre-
sent different variables. The basic idea of PCA is
to find a basis for representing the data X such
that the data are well represented by a truncated
basis [16,17]. We define the covariance matrix1

R ¼ 1=ðn� 1ÞXTX and perform an eigenvector
decomposition of R to obtain K ¼ Q�1RQ, where
Q are the orthonormal eigenvectors of R, which
implies that Q�1 ¼ QT. The eigenvectors (columns
of Q) form a new basis, and the PCs of the data
represented by X are defined as

g ¼ QX: ð1Þ
The full set of PCs exactly reproduces all observa-
tions in the original data, by definition.

The PCA analysis recasts the observations in a
rotated basis that has some desirable properties:

� The basis is orthonormal.

1 Here we have assumed that the data are centered (its
mean is zero) and scaled by constant factors ci. These are
common procedures that can strongly influence the
results of the PCA. For results here, we chose vast
scaling (see [17]).
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� The basis optimally represents the variance in
the original data.
� The eigenvalues, K, indicate which basis vec-

tors (eigenvectors) are of greatest importance
in representing the data.
� Since PCA is a linear transformation, if we

have governing equations for the original
basis, we may easily obtain governing equa-
tions in the new (PC) basis, as discussed in Sec-
tion 2.1.1.

The real utility in PCA comes by exploiting the
fact that PCA maximizes the variance of the data
in each PC direction. Hence, the rotated coordi-
nate system has the property that the first dimen-
sion (corresponding to the largest eigenvalue) is
selected to best represent the variance in the data.
Subsequent directions each represent the next-
largest variance in the data. Therefore, a trun-
cated basis, i.e. a subset of the columns in Q,
can approximate the original data remarkably
well. We define a transformation matrix A as a
rank-deficient subset of the Q matrix with n rows
and ng columns. The columns of A correspond to
the columns of Q with the ng largest eigenvalues.
We may then approximate X as

X � gAT: ð2Þ
In the context of combustion applications, the

n variables comprising the rows of X are the ns + 1
primitive variables ½T ; p; Y 1; Y 2; . . . ; Y ns�1�. Per-
forming a PCA on this set of variables yields a
new (ns + 1)-dimensional basis, g, which is a rota-
tion of the original basis. Retaining the
ng < ðns þ 1Þ columns of Q with the largest eigen-
values defines a basis for a ng-dimensional param-
eterization of the thermochemical state of the
system.

2.1.1. Transport equations for the PCs
The transport equations for a set of variables

U ¼ ½T ; p; Y 1; Y 2; . . . ; Y ns�1�T may be written as2

q
DðUÞ

Dt
¼ �r � ðjUÞ þ ðsUÞ; ð3Þ

where D
Dt 	 q o

ot þ u � r is the material derivative
operator, u is the mass-averaged velocity of the sys-
tem, jU is the mass-diffusive flux of U relative to the
mass-averaged velocity, and sU is the volumetric
rate of production of U. For the analysis presented
herein, data were considered from a multitude of
observations in both space and time, and the PCA
was performed on the combined spatial-temporal
dataset. Therefore, A is constant in space and time
by construction, and commutes with differential
operators such as $, $�, and D

Dt. Given that A is con-

stant and since PCA represents a linear transforma-
tion, we may multiply Eq. (3) by A, with X = U, to
find transport equations for the PCs

q
D

Dt
ðgÞ ¼ �r � ðjgÞ þ ðsgÞ; ð4Þ

where ðgÞ ¼ ½A�ðUÞ, ðjgÞ ¼ ½A�ðjUÞ and ðsgÞ ¼ ½A�
ðsUÞ. In Eq. (4), the source terms of temperature,
pressure, and all species contribute to the source
term for each PC (assuming nonzero Aij).

3 There-
fore, the truncated basis (where ng < ns + 1) must
not only parameterize the thermochemical state
but the source terms as well. This paper considers
both of these issues quantitatively by examining
data obtained from DNS.

2.2. PCA modeling approach

A complete PCA modeling approach requires
several ingredients. First, the PCs must be identi-
fied using the procedure outlined in Section 2.1.
This identification requires high-fidelity, fully-
resolved data including source terms. Once the
PCs are selected, transport equations may be
derived for each PC as described in Section 2.1.1.

Second, the initial conditions (ICs) and bound-
ary conditions (BCs) on the PCs must be defined
using the transformation matrix A. For Dirichlet
BCs on all U, we obtain Dirichlet conditions on
the PCs, U ¼ U
 ) g ¼ ATU
 (ICs are analo-
gously defined). Likewise, Neumann conditions
on U yield Neumann conditions on g,
n � rU ¼ H) n � rg ¼ ATH. Mixed conditions
on U, e.g. Neumann conditions on /1 and Dirich-
let conditions on /2 . . . /n yield Robin boundary
conditions on g.

Diffusion terms in the transport equations for
g require evaluation of the diffusive fluxes for
each component of U. In turbulent flow calcula-
tions, the molecular diffusion term is typically
augmented by a ‘‘turbulent diffusion” term aris-
ing from closure of the convective term. In
many cases, and particularly at high Reynolds
number, the molecular diffusion term is small
relative to the turbulent diffusion term and is
neglected. However, even when one wishes to
retain the full description of molecular diffusion,
the treatment with PCA is straightforward.
First, U is approximated from g. Next, the dif-
fusive terms for U, jU, are constructed. Finally,
the diffusive fluxes for the PCs are calculated as
ðjgÞ ¼ ½A�

TðjUÞ.

2 This analysis applies equally to conserved variables
q;qh;qY i.

3 For open domains in the absence of strong pressure
gradients (e.g. shock waves), the thermochemical state is
relatively insensitive to small pressure changes. There-
fore, the coefficient scaling pressure in the PCA will be
negligible. In the analysis conducted here, pressure was
not considered.
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Source terms for the PCs, sg, can be parameter-
ized by g and tabulated a priori to avoid run-time
calculation. Accurate representation of sg is cru-
cial to this modeling strategy and will be
addressed in Section 3.2.

In turbulent flow, closure is required for the
source terms (convective terms can be treated in
a manner consistent with other equations).
Depending on the number of PCs and their spatial
correlation, one may consider presumed PDF
approaches, quadrature method of moments
[18–20], or transported PDF approaches [21,22].
This paper will not address specific issues related
to turbulent closure.

2.2.1. Obtaining the PCs
As discussed above, a successful application of

PCA as a modeling approach requires parameter-
ization of the source terms for each PC. This, in
turn, requires that the data that PCA is applied
to must have source terms for all U, which is cur-
rently impossible to obtain from experimental
data. Therefore, this modeling approach will
require availability of computational data gener-
ated from reliable chemical mechanisms using
methods such as DNS. Furthermore, the reliabil-
ity of PCA as a modeling approach also hinges
on the relative invariance of PCs from one dataset
to another that is nearby in parameter space.

3. Results

In this section, we present results of PCA
applied to two DNS datasets of nonpremixed
CO/H2 combustion. The DNS datasets were cal-
culated using a code with eighth-order spatial
and fourth-order temporal discretization.
Detailed kinetics of CO/H2 oxidation were used
[23,24], along with mixture-averaged transport
approximations. The fuel stream was 0.45% CO,
0.05% H2, and 0.5% N2, giving a stoichiometric
mixture fraction of fst = 0.4375, and both fuel
and air streams are at 300 K.

Case A is a spatially evolving jet with an ini-
tial vmax = 25 s�1, while case B is a temporally
evolving jet with an initial vmax = 125 s�1. The
primary difference between the two datasets is
the initial scalar dissipation rate (v) and turbu-
lence intensity, which affects the degree of
extinction observed; case A exhibits virtually
no extinction, while case B exhibits moderate
extinction. The existance of moderate extinction
in case B is shown qualitatively in Fig. 1a,
which shows T versus v at fst. Additional details
of the DNS code and simulation configuration
may be found elsewhere [4,15].

To quantify the error in representing the data
in a low-dimensional space parameterized by g,
we calculate the R2 value

R2 ¼ 1�
Xm

i¼1

ðui � u
i Þ
2

" # Xm

i¼1

ðui � �uÞ2
" #�1

; ð5Þ

where ui is the ith observation, u
i is the parame-
terized approximation to ui, and �u is the mean of
ui. In this sense, the R2 value quantifies the ability
of the PCs to parameterize a quantity u.

3.1. Parameterizing the state variables

Here we present results of parameterization of
the state variables. We choose to first condition
the data on mixture fraction, f, since this is a con-
venient variable to ‘‘force” as the first component.

Figure 1a and b shows the parameterization (at
fst) of T by v and the first PC, g1, respectively, for
case B. Examining Fig. 1b, we see that g1 acts as a
progress variable, capturing the extinction process
remarkably well. This has also been observed for
other choices of progress variables such as CO2

(see, e.g. [4,14]). Comparing the two-parameter
PCA approach with the (f,v) parameterization is
reasonable since both are two-parameter models,
although the second parameter (v versus g1) repre-

Fig. 1. Parameterization of T at fst by v (a) and g1 (b) for
case B. Solid lines are the doubly-conditional mean
temperature, hT jfst ;g1

i. R2 is calculated from Eq. (5). See
the corresponding entries in Table 2.
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sents different physical phenomena (gradient ver-
sus chemical state). Although not presented here,
the analogous plot for case A shows virtually
identical behavior, with the range on g1 decreased
and the minimum temperature increased as case A
does not exhibit extinction. Figure 2 shows the
parameterization of the OH mass fraction by the
common (f,v) and the proposed (f,g1) parameter-
izations. This demonstrates that the PCA
approach can be used to represent a wide range
of the state variables, not temperature alone.
Table 1 gives the weightings (ai) on the state vari-
ables (/i) that define g1, g2, and g3, where
g ¼

Pn
i¼1ai/i, for the PCA applied at fst on case

B. From Table 1, it is clear that the PCs do not
have a simple physical interpretation other than
a linear combination of each of the original
variables.

Also shown on Fig. 1a and b is the R2 value as
calculated by Eq. (5), which will be used as a quan-
titative measure for the quality of the parameteriza-
tion. Table 2 lists R2 values for reconstruction of the
temperature and all species mass fractions in the
detailed mechanism employed in the DNS for var-
ious ng at fst. These values are a concise, quantita-

tive representation of the information presented
graphically in Figs. 1 and 2. For example, for case
B with ng = 1 (i.e. a parameterization based on mix-
ture fraction and a single PC), we obtain
R2

T ¼ 0:967, corresponding to Fig. 1b. For compar-
ison, Table 2 also lists R2 values for an (f,v) param-
eterization, e.g. R2

T ¼ 0:801 (see also Fig. 1a).
Clearly, the two-parameter (f,g1) parameterization
reconstructs the temperature and most other state
variables with much more accuracy than the (f,v)
parameterization. It should be noted that the
results for the (f,v) parameterization represent the
best possible performance of a model based on
(f,v); the steady laminar flamelet model typically
does not perform ideally [4].

Table 2 also demonstrates that increasing the
number of retained PCs increases the accuracy with
which the state variables are represented. This illus-
trates the point that one may select a desired error
threshold and then determine the minimum num-
ber of PCs required to achieve that accuracy. Con-
versely, one may choose the number of PCs and
estimate a priori the associated error.

3.2. Parameterizing source terms

As discussed in Section 2.1.1, the PCs are not
conserved variables, and their source terms must
also be parameterized. In this section, we explore
the ability of PCA to parameterize source terms.
Any function of X may be approximated by
FðXÞ �FðAgÞ. However, it is more accurate to
calculate FðXÞ directly from the data in n-dimen-
sional space and then project it onto g by calculating
the conditional mean hFðXÞjgi in ng-dimensional
space than to calculate FðAgÞ. Thus, source terms
(sg) are calculated directly from the original
observables, X, and their conditional means (in
ng-dimensional space) are projected onto g. Figure
3 illustrates this for the two-dimensional (f,g1)
parameterization where we require sg1

. The real-
izations of sg1

along with the conditional mean
hsg1
jfst ;g1
i are shown as functions of g1 for case B.

Fig. 2. Parameterization of OH at fst by v (a) and g1 (b)
for case B. Solid lines are the doubly-conditional mean
OH value, hY OHjfst ;g1

i. R2 is calculated from Eq. (5). See
the corresponding entries in Table 2.

Table 1
Definition of g1 and g2 in terms of the original state
variables at fst for case B. g ¼

Pn/

i¼1ai/i

i /i ai for g1 ai for g2 ai for g3

1 T �0.793 �0.2897 0.0503
2 H2 0.095 0.2226 0.1509
3 O2 0.222 0.1399 �0.1000
4 O 0.121 0.1438 0.5592
5 OH �0.298 0.1885 0.4522
6 H2O �0.353 0.8607 �0.2476
7 H 0.093 0.1374 0.4124
8 HO2 0.080 0.0432 �0.0703
9 H2O2 0.092 0.0707 0.0116
10 CO 0.232 0.1458 �0.0913
11 CO2 �0.030 �0.0007 �0.4500
12 HCO 0.078 0.0540 0.0173
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Table 3 summarizes the ability of an ng-
dimensional PCA to parameterize the source
terms of the PCs. We first consider the column
describing the results at fst. For case A, a two-
dimensional parameterization (f,g1) captures sg1

with R2
sg1
¼ 0:993. For case B, we require three

PCs to parameterize sg1
to a similar degree of

accuracy. Comparing the dimensionality require-
ments for parameterizing sg with those for
parameterizing the state variables (see Table 2),
we see that parameterizing the source terms does
not require more PCs than parameterization of
the state variables themselves, an encouraging
result.

3.3. Global versus semi-local PCA

The results presented thus far have been
obtained ‘‘locally” at fst. One may consider
whether a PCA performed at fst is applicable at
other f. We term this a ‘‘semi-local” PCA. If the
PCA is highly dependent on mixture fraction,
then one of two options must be considered:

� Eliminate the mixture fraction as a parameter
and seek a global PCA on the entire dataset.
This approach typically requires more PCs
than a PCA obtained at fst [25].
� Perform a local PCA in f-space and derive

transport equations for gjf. These equations
would have exchange terms representing trans-
port in mixture fraction space. This approach
is further complicated by the fact that the very
definition of the PCs would vary with f.

If the PCA obtained at fst reasonably represents
the data at other f, then the transport equations
derived in Section 2.1.1 may be used directly at
all f, eliminating the need for conditional equa-
tions in f-space.

Tables 4 and 5 provide parameterization errors
for the state variables at f = 0.2 and f = 0.6,
respectively. Table 3 shows the parameterization
errors for sg at f = 0.2 and f = 0.6. Interestingly,
the parameterizations do not perform well at lean
conditions; the same is true for the (f,v) parame-
terization. A posteriori testing is necessary to fully
determine the parameterization accuracy
required. However, these results show promise
for the ability to use a PCA obtained at fst

globally.

Table 2
R2 values defined by Eq. (5). Also shown are results for the v parameterization. All results are at f = fst = 0.4375

ng T H2 O2 O OH H2O H HO2 H2O2 CO CO2 HCO

Case A v 0.789 0.344 0.811 0.718 0.165 0.085 0.695 0.839 0.816 0.803 0.827 0.828
1 0.983 0.259 0.976 0.930 0.240 0.178 0.823 0.986 0.916 0.978 0.956 0.980
2 0.983 0.936 0.968 0.958 0.963 0.924 0.964 0.980 0.985 0.969 0.976 0.980

Case B v 0.801 0.509 0.807 0.697 0.426 0.186 0.648 0.665 0.729 0.810 0.058 0.817
1 0.967 0.370 0.910 0.614 0.736 0.531 0.524 0.940 0.849 0.907 0.094 0.901
2 0.996 0.845 0.982 0.882 0.931 0.990 0.858 0.974 0.941 0.981 0.378 0.984
3 0.990 0.904 0.982 0.984 0.979 0.991 0.985 0.977 0.933 0.981 0.854 0.980

Fig. 3. Parameterization of sg1
at fst by v (a) and g1 (b)

for case B. Solid lines are hsg1
jfst ;g1
i, the doubly-condi-

tional mean value of sg1
. R2 is calculated from Eq. (5).

See the corresponding entries in Table 2.

Table 3
R2 values defined by Eq. (5) for PC source terms, sg

Case sg f = 0.2 f = fst = 0.4375 f = 0.6

ng = 1 ng = 2 ng = 3 ng = 1 ng = 2 ng = 3 ng = 1 ng = 2 ng = 3

A sg1
0.993 0.985 – 0.978 0.985 – 0.923 0.934 –

sg2
– 0.996 – – 0.922 – – 0.876 –

B sg1
0.270 0.844 0.967 0.815 0.932 0.958 0.809 0.852 0.902

sg2
– 0.835 0.955 – 0.951 0.961 – 0.883 0.909

sg3
– – 0.976 – – 0.731 – – 0.831
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4. Conclusions

A modeling approach based on PCA has been
proposed and tested a priori using DNS data. This
modeling approach is complete, with the excep-
tion of a turbulent closure model which would
be required if this model were used in a LES or
RANS context. The model is based on a rotation
of the thermochemical state basis from one based
on temperature, pressure, and ns � 1 species mass
fractions to one which best represents the variance
in the data. PCA has the convenient property that
a truncated basis provides an optimal representa-
tion of the data. Implementation of the model
requires transport equations for the principal
components, which are reacting scalars.

Results from a quantitative a priori analysis of
this approach using DNS data show great prom-
ise. State variables and source terms both are
parameterized well by a two-parameter (f,g1)
model, and adding additional parameters provides
a significant increase in accuracy for all state vari-
ables and their reaction rates. Results also indi-
cate a uniformly better representation of the
DNS data using an (f,g1) parameterization over
the commonly used (f,v).

There are many potential applications of this
modeling approach. For example, laminar flame
calculations could benefit from PCA modeling
approaches to provide rapid solutions using a
reduced set of equations. Once a full calculation
has been performed, subsequent calculations
may be performed using PCs rather than the full
set of species and energy equations. The number
of PCs retained can be chosen by the desired accu-
racy. This could be particularly useful for stochas-

tic models such as the linear eddy model (LEM)
[26,27] and the one-dimensional turbulence
(ODT) model [28,29], which require many realiza-
tions of a flow field. The first realization could
employ full chemistry while subsequent realiza-
tions utilize a reduced set of equations defined
by PCA. Another application is in modeling tur-
bulent flows, where a compact parameterization
of the thermochemical state is key to achieving
affordable simulations. Additionally, while the
analysis presented herein has been applied to non-
premixed combustion, the PCA approach applies
in principle to all combustion regimes from pre-
mixed to nonpremixed.

For application to turbulent flows, additional
closure models are required for the unresolved
convective and source terms. In the context of
transported PDF methods, a PCA modeling
approach could drastically reduce the computa-
tional cost by significantly reducing the thermo-
chemical dimensionality while maintaining a
quantified error bound on the thermochemical
reduction.

Future work will focus on examining the feasi-
bility of PCA with various fuels and exploring the
universality of the PCA, i.e. the applicability of a
PCA obtained under one set of conditions to be
applied to a simulation at another set of condi-
tions. Also, a posteriori tests will be conducted
to determine the effect of nonlinear propagation
of errors in source term parameterization.

The PCA modeling approach proposed herein
requires high-fidelity, fully-resolved data includ-
ing reaction rates. For this reason, we plan to con-
sider LEM and ODT as methods to generate
surrogate DNS data. These methods are signifi-

Table 4
R2 values at f = 0.2 using the PCA obtained at fst. Also shown are results for the v parameterization

ng T H2 O2 O OH H2O H HO2 H2O2 CO CO2 HCO

Case A v 0.097 0.798 0.169 0.774 0.736 0.245 0.827 0.812 0.811 0.580 0.432 0.881
1 0.500 0.413 0.816 0.212 0.188 0.134 0.319 0.433 0.398 0.666 0.555 0.619
2 0.968 0.910 0.881 0.868 0.859 0.940 0.888 0.838 0.855 0.867 0.940 0.934

Case B v 0.497 0.542 0.390 0.303 0.329 0.269 0.558 0.537 0.390 0.417 0.206 0.689
1 0.979 0.741 0.866 0.337 0.219 0.749 0.127 0.805 0.858 0.859 0.513 0.403
2 0.996 0.877 0.945 0.819 0.822 0.994 0.806 0.970 0.960 0.958 0.737 0.860
3 0.990 0.963 0.958 0.989 0.977 0.994 0.978 0.984 0.982 0.968 0.808 0.955

Table 5
R2 values at f = 0.6 using the PCA obtained at fst. Also shown are results for the v parameterization

ng T H2 O2 O OH H2O H HO2 H2O2 CO CO2 HCO

Case A v 0.676 0.190 0.740 0.642 0.548 0.073 0.434 0.741 0.727 0.467 0.572 0.555
1 0.956 0.287 0.958 0.887 0.587 0.076 0.542 0.966 0.867 0.836 0.868 0.751
2 0.959 0.962 0.949 0.923 0.775 0.826 0.768 0.955 0.898 0.911 0.919 0.889

Case B v 0.628 0.081 0.593 0.662 0.112 0.246 0.365 0.508 0.616 0.521 0.268 0.570
1 0.964 0.134 0.904 0.804 0.197 0.755 0.721 0.938 0.650 0.844 0.442 0.896
2 0.984 0.612 0.928 0.836 0.373 0.986 0.822 0.960 0.791 0.873 0.542 0.930
3 0.986 0.769 0.948 0.888 0.543 0.991 0.913 0.967 0.839 0.909 0.841 0.941
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cantly less expensive than DNS, but it remains to
be seen in reacting flow whether such methods can
be used to reliably reproduce statistics obtained
from DNS data.
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