1. It is well known that the integrated expressions for batch and plug flow reactors are identical when there is no volume change. What happens to these expressions when there is volume change? A first order gas-phase reaction with volume change is of interest. Derive integrated rate expressions for a batch reactor (time to reach a certain level of conversion) and a plug flow reactor (Volume or τ to reach a certain level of conversion). All of the integrals that you may need are at the back of your text. Are these expressions the same? Explain your answer.

17 points

2. The reversible (elementary) reaction $2A \rightleftharpoons C + D$ is conducted in a CSTR at a feed rate of 100 liters/min with an inlet concentration $C_{A0} = 1.5$ mol/lit. The specific rate in the forward direction is 10 lit/mol-min and the equilibrium constant is 16. 80% of the equilibrium conversion is required. Find the size of a CSTR to achieve this conversion.

17 points

3. The conversion of an irreversible first-order, liquid-phase reaction, taking place in a PFR of 500 liter capacity is 50%. In order to increase conversion, a 300 liter CSTR is installed upstream of (before) the PFR. What is the exit conversion in the new system?

16 points

4. The irreversible reaction $A \rightarrow B$ was carried out in a constant volume batch reactor and the following concentration-time data were obtained. Find the reaction order and the reaction rate constant. Identify the units of the rate constant. Show the finite difference formulae that you would use to obtain $\frac{dC_A}{dt}$ clearly.

<table>
<thead>
<tr>
<th>t(min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_A(mol/lit)</td>
<td>4.0</td>
<td>2.3256</td>
<td>1.1025</td>
<td>0.3306</td>
<td>0.01</td>
</tr>
</tbody>
</table>

17 points

5. An elementary second order adiabatic reaction $A + B \rightarrow C + D$ is taking place in a CSTR. The feed to the reactor is equimolar A and B at concentrations of 2.4 mol/liter. The entering temperature is 300 K. The volumetric flow rate is 15 lit/min. Following are some other data characterizing the reaction.

$C_{p_s} = 20$ Btu/lb.mol.oF
$C_{p_B} = 15$ Btu/lb.mol.oF
$C_{p_c} = 15$ Btu/lb.mol.oF
$C_{p_j} = 20$ Btu/lb.mol.oF
$\Delta H_{f_s}(300K) = -7000$ cal/mole of A
$k(300 K) = 0.00045$ l/mol-min
$E = 12,000$ cal/mol

What volume of the reactor is required for 75% conversion?

16 points
6. A first-order, gas-phase reaction \(A \rightarrow 2B \) is performed in a PBR at 400 K and 10 atm. Feed rate is 5 mol/s containing 20% \(A \) and the rest inerts. The PBR is packed with 8 mm-diameter spherical porous particles. The intrinsic reaction rate is given as: \(r'_A = 3.75 \, C_A \, \text{mol/kg(cat)-s} \). Bulk density of the catalyst is 2.3 kg/liter. The diffusivity is 0.1 cm\(^2\)/s. The pressure drop parameter alpha is found to be \(9.8 \times 10^{-4} \, \text{kg}^{-1} \).

 a. What is the value of the internal effectiveness factor? What does it signify?
 b. How much catalyst (kg) is required to obtain a conversion of 75% in the reactor?
 c. Find the pressure at the exit of the reactor.

17 points