CHEN 1703 - HOMEWORK 11

Problem 1 (20 pts) - No report required.

The Redlich-Kwong equation of state is given by

$$
\begin{equation*}
p=\frac{R T}{\bar{V}-b}-\frac{a}{\sqrt{T} \bar{V}(\bar{V}+b)}, \tag{1}
\end{equation*}
$$

where \bar{V} is the molar volume (units $\left.\mathrm{m}^{3} / \mathrm{mol}\right), R=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ is the gas constant, T is the temperature (in K), and p is the pressure (Pa).

Using equation (1), solve for the molar volume for methanol at 10 atm pressure ($1,013,250 \mathrm{~Pa}$) and temperatures ranging from $273.15 \mathrm{~K}(0 \mathrm{C})$ to 1000 K . Use at least 50 temperature entries between 300 and 1000 K . Plot the molar volume versus temperature. Also plot the ideal-gas molar volume for methanol. The parameters for use in equation (1) for methanol are $a=21.7130 \mathrm{~Pa}$ and $b=4.5608 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}$.

1. (10 pts) Solve this problem using MATLAB.
2. (10 pts) Solve this problem using Excel.

Hint: set up the residual equation $r(T)=p-\frac{R T}{V-b}+\frac{a}{\sqrt{T \bar{V}}(\bar{V}+b)}$ for pressure for each temperature. Then choose a reasonable guess for the molar volume (you could use the ideal gas law to get a good guess) and use solver to solve all of the equations at once.

NOTE: In equation (1) use pressure in Pa to maintain consistent units.
Submit your Matlab and Excel files. No report is required for this problem.

