CHEN 1703 - Homework 13

Problem 1 (10 pts) - submit a brief report for this problem.

Create a MATLAB script to do the following:

1. (4 pts) Use Matlab's symbolic toolbox to calculate the inverse of a 3×3 matrix, A^{-1}, given $A=$ $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Use this to calculate $x=A^{-1} b$, where $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$.
2. (4 pts) Use solve to solve for x in a general 3×3 system $A x=b$. In other words, write out the three equations implied by the matrix above and solve them using MATLAB's solve function.
3. $(2 \mathrm{pts})$ Subtract the result from part 2 from the result from part 1 and show that they are zero.

All of this should be done using a single MATLAB script.
In your report, show the following:

- The analytic solution you obtained from MATLAB for A^{-1}.
- The analytic solution you obtained for x.

Problem 2 (15 pts) - submit a brief report for this problem.

Consider two objects with mass m_{1} and m_{2} that undergo an elastic collision as depicted in Figure 1.

Figure 1: Schematic of a collision between two objects.
Conservation of momentum through the collision relates the initial velocities \mathbf{u}_{1} and \mathbf{u}_{2} to the final velocities, $\mathbf{u}_{1 f}$ and $\mathbf{u}_{2 f}$,

$$
\begin{equation*}
m_{1} \mathbf{u}_{1}+m_{2} \mathbf{u}_{2}=m_{1} \mathbf{u}_{1 f}+m_{2} \mathbf{u}_{2 f} \tag{1}
\end{equation*}
$$

For an elastic collision, kinetic energy is also conserved, which implies

$$
\begin{equation*}
m_{1}\left(\mathbf{u}_{1}^{2}-\mathbf{u}_{1 f}^{2}\right)+m_{2}\left(\mathbf{u}_{2}^{2}-\mathbf{u}_{2 f}^{2}\right)=0 \tag{2}
\end{equation*}
$$

1. (5 pts) Use Matlab's symbolic toolbox to solve equations (1) and (2) for the final velocities, $\mathbf{u}_{1 f}$ and $\mathbf{u}_{2 f}$ in terms of the initial velocities $\mathbf{u}_{1}, \mathbf{u}_{2}$, and the object masses, m_{1} and m_{2}. Use Matlab's pretty function to display the results. Note: you should obtain two roots. In your report, briefly interpret each.
2. (10 pts) Plot $\mathbf{u}_{1 f}$ and $\mathbf{u}_{2 f}$ as functions of $\frac{m_{2}}{m_{1}}$ for $\mathbf{u}_{2}-\mathbf{u}_{1}=\left[\begin{array}{lllll}-5 & -2 & 0 & 2 & 5\end{array}\right]$. Discuss your results. Note that for $\mathbf{u}_{1 f}$ your plot should look like Figure 2.

Figure 2: Results for $\mathbf{u}_{1 f}$ as a function of $\frac{m_{2}}{m_{1}}$ for various values of $\mathbf{u}_{2}-\mathbf{u}_{1}$.

Problem 3 (10 pts) - No report - submit M-file.

1. (5 pts) Use MATLAB to obtain the analytic solution for the roots of a general cubic polynomial, $y=$ $a x^{3}+b x^{2}+c x+d$. Convert the answer you obtain to an executable MATLAB expression using the vectorize command. Implement a function to calculate the roots of a cubic function using the analytic solution.
2. (5 pts) The Van der Waals equation of state is of the form:

$$
p=\frac{R T}{\bar{V}-b}-\frac{a}{\bar{V}^{2}} .
$$

- Rearrange this into a cubic equation for the \bar{V}, in other words, write it in a form $\alpha \bar{V}^{3}+\beta \bar{V}^{2}+$ $\delta \bar{V}+\gamma=0$. Note that I couldn't get MATLAB to do this - I did it by hand. If you can get MATLAB to do this, I would like to know how you did it!
- Use the function you created in part 1 along with the Van der Waals equation (in cubic form) to estimate the molar volume of water at $T=200 \mathrm{C}=473.15 \mathrm{~K}$ and $p=2$ bar. The constants for water are $a=5.536 \frac{\mathrm{~L}^{2} \mathrm{bar}}{\mathrm{mol}^{2}}$ and $b=0.03049 \frac{\mathrm{~L}}{\mathrm{~mol}}$. Note that the value of the gas constant in consistent units is $R=0.083415 \frac{\mathrm{Lbar}}{\mathrm{molK}}$.
- Verify your solution using the roots function in MATLAB.

